

 ATARI 850

 Interface Module

Owner's Manual

COPYRIGHT 1980 ATARI, INC.

Every effort has been made to ensure that this manual accurately

documents the Disk Operating System of the ATARI Personal Computer

Systems. Howeven due to the ongoing improvement and update of the

computer software ATARI, INC. cannot guarantee the accuracy of

printed material after the date of publication nor can ATARI accept

responsibility for errors or omissions.

C015953 rev. 1

1

2

Chapter 1 INTRODUCTION

Unpacking

ATARI 850 Interface Module

ATARI 825 Printer

ATARI 830 Modem

Contents of this manual

How to use this manual

Chapter 2 SYSTEM CONFIGURATIONS

Hook-up

Power-up

Configurations using only the Printer Port of the ATARI 850

if you have more than one ATARI printer

Configurations using only the ATARI 830 Modem with the 850

Configurations with Printen Modem and Disk Drive

Configurations with the 410 Program Recorder

Chapter 3 SERIAL PORTS

Overview

Default conditions

Limitations on Port configurations

Mode -- block output or concurrent I/O

Block Output

Concurrent I/O Mode

Warnings and Restrictions

Configuring a Port

Setting the Baud, word size, stop bits and ready monitoring

Setting translation modes and parity

Controlling the outgoing lines DTN RTS and XMT

Using a Port

Opening an RS-232-C Port

Closing an RS-232-C Port

Starting Concurrent I/O mode

Basic I/O statements GET, INPUT, PUT and PRINT

Other I/O commands from BASIC: LIST, SAVE, LOAD and ENTER

Forcing Early transmission of output blocks

STATUS command

3

APPENDIX 1 What is RS-232-C?

APPENDIX 2 RS-232-C Port Error Conditions, Causes and Corections

APPENDIX 3 Printer Port Error Conditions Causes and Corrections

APPENDIX 4 Meaning of (Error) Bits in Location 746 After STATUS

 Command

APPENDIX 5 Setting the Baud, Word Size, Stop Bits and Ready

Monitoring

APPENDIX 6 Translation and Parity Handling

APPENDIX 7 Controlling the Outgoing Lines DTN RTS and XMT

APPENDIX 8 Starting Concurrent I/O mode

APPENDIX 9 User Programs

1. Programs to transfer BASIC source programs from

computer to computer.

2. Baudot Terminal Emulator

3. Example of Programming a Printer through an RS-

232-C port

4. Another example of printer control through an RS-

232-C port

S. Reading a digitizer: more input than BASIC can

handle

APPENDIX 10 Code tables ASCII, ATASCII, BAUDOT

APPENDIX 11 Principles of operation of the ATARI 850 Interface

Module

APPENDIX 12 Interface Module specifications

APPENDIX 13 ATARI 830 Modem

4

TABLES and FIGURES

Table 2.1 Power--up procedure with various configurations

Table 2.2 Available control signals on ports 1, 2, 3 and 4

APPENDIX 1

Figure 1 Communications hook-up showing role of RS-232-C

Table 1 The most common RS-232-C circuits

Table 2 RS-232-C electrical specifications

APPENDIX 4

Table 1 Decimal representation of the error bits in location

746

Table 2 Sense values added into location 747

APPENDIX 5

Table 1 Baud rate specifiers to add to Aux1 in XIO 36

Table 2 Word size specifiers to add to Aux1 in XIO 36

Table 3 Specifier for two stop bits to add to Aux1 in XIO 36

Table 4 Specifier to monitor DSN CTS and CRX in Aux2 in XIO 36

APPENDIX 6

Table 1 Translation mode options added to Aux1 in XIO 38

Table 2 Input parity mode options added to Aux1 in XIO 38

Table 3 Output parity mode options added to Aux1 in XIO 38

Table 4 Append Linefeed options added to Aux1 in XIO 38

APPENDIX 7

Table 1 Control values for DTR added to Aux1 in XIO 34

Table 2 Control values for RTS added to Aux1 in XIO 34

Table 3 Control values for XMT added to Aux1 in XIO 34

 APPENDIX 12

 Figure 1. Pin functions of Serial Port No. 1 in ATARI 850

 Interface Module (9-pin female connector).

 Figure 2. Pin functions of serial port No. 2 and 3 in ATARI

850 Interface Module (9-pin female connectors).

 Figure 3. Pin functions of Serial Port No. 4 in ATARI 850

 Interface Module (9-pin female connector).

 Figure 4. Hook-up of Serial Port No. 4 with a 2O mA loop

device.

 Figure 5. Pin functions of the Printer Port of the ATARI 850

 interface Module (15-pin female connector).

 Figure 6. Printer Port timing diagram.

 Figure 7. Schematic diagram of the ATARI 850 Interface

 Module.

5

INTRODUCTION

Unpacking

Verify that the container for your ATARI 850CtmJ Interface Module

contains the following items:

Interface Module

I/O Cable assembly (Data cord) No. CAO1412

Power Adapter No. CAO14748

Save all packing material in case you have to ship the Interface

Module or store it for an extended period.

ATARI 850 Interface Module

The ATARI 850 Interface Module allows communication between your

ATARI Personal Computer and RS-232-C peripherals. The ATARI 410

Program Recorder disk driver ATARI 820 Printer and devices plugged

in to a controller jack function without the interface module.

The interface module connects between the computer console and the

peripherals. The interface module has four serial ports and one

parallel port which is referred to as the Printer Port. The

interface module contains a processor and memory and programmable

ports. The programming of the interface module is controlled from

the ATARI Personal Computer System.

ATARI 825 Printer

The ATARI 825 Printer is an 80-column medium-speed Printer. It is

much more versatile that the ATARI 820Ctm7 Printer. The 825 Printer

requires an A1"ARI B50 Interface Module that is used in conjunction

with ir

The 825 Printer connects to the Printer Port of the Interface

Module.

ATARI 830 Modem

The ATARI 830 Modem is a Bell 103-compatible modem that enables you

to communicate over the switched telephone network with another

terminal equipped with a similar modem. The ATARI 830 Modem requires

an ATARI 850 Interface Module that is used in conjunction with ir

The modem usually connects to port 1 of the interface module. The

modem under the control of the interface module produces tones that

are sent out as electrical signals aver the telephone lines.

Messages are received by the modem as tones that it decodes and

sends to the interface module. The incoming/outgoing traffic is

managed according to the programmed functions of the interface

module. The technical specifications of the Modem are given in

APPENDIX 13.

6

Contents of This Manual

The ATARI 850 Interface Module will be used with many different

System configurations. Different configurations impose different

demands on the user in what he has to know. The procedures are also

different for different configurations. The general rules that must

be observed in connecting and powering up are described and
illustrated in Chapter 2.

Having connected your system and turned on the power. you then need

to know how to program and use the ports to which you have connected

your peripherals. The most complex technical material is in Chapter

3, which describes how to use the serial ports, and the supporting

Appendices of Chapter 3.

The Appendices include user programs. code conversion tables. error

codes. description of the RS-232-C communication standard and a

technical description of the interface module. In addition. there

are appendices that give the precise information necessary for

configuring and using the serial ports.

7

How To Use This Manual

First determine the system configuration you are using. You may then

use Table 1 of Chapter 2 to guide you in hooking up and powering

your system.

If you are using the Interface Module with only the ATARI 825

Printer all the necessary operating information is given in the

manual supplied with the printer. You do not need the other

information in this manual.

If you are using the Interface Module with a parallel printer that

is not the ATARI 825 printer you will need to refer to APPENDIX 11

to understand the principles of operation of the Interface Module

and timing constraints on the Printer Port and to APPENDIX 12 for

pin connector information.

If you are using a serial port (with or without using the printer

port as well) - you may need to configure the serial port. One case

where you will not need to configure the serial port is where you

are using a cartridge that requires a particular configuration which

is imposed by the system when the power is turned on. For example,

the ATARI TeleLink I uses serial port 1 but does not permit you to

change the configuration or the operation of the port.

If your system configuration will support different configurations

of the serial ports you should examine the default configuration

(Chapter 3) to determine if the default settings are satisfactory

and compatible with the specifications of your peripheral device.

If the default configuration is satisfactory you can proceed to use

the serial ports with proper I/O commands. The commands in BASIC are

described briefly in Chapter 3 and described more fully in

the Appendices. In this case you will not have to refer to the

rather complex coding required for configuring a port.

If you do have to configure a port you should read the appropriate

parts of Chapter 3 and then refer to the detailed information in

Appendices 5 through 7. In case the material on configuring a port

is confusing to you, you may find it helpful to read APPENDIX 1

(What is RS-232-C?) and/or APPENDIX 11 (Principles of Operation).

If you are familiar with the RS-232-C standard you will probably be

able to proceed through Chapter 3, consulting the Appendices

referred to there as necessary. However if you are not familiar with

the RS-232-C standard it will probably be most efficient to read

APPENDIX 1 on RS-32-C before you attempt to read Chapter 3.

The commands for configuring a port are covered very briefly in

Chapter 3; little more than the form of the commands is give.

8

The detailed technical descriptions necessary for a full

understanding of all aspects of configuring a port are placed in the

Appendices that parallel the subsections in Chapter 3. Therefore you

should read the port configuration parts of Chapter 3 to "see the

big picture" and turn to the relevant Appendices for the detailed

information necessary to write actual program segments.

The examples in APPENDIX 9 will show you how to control ports under

the various conditions described in the examples. In addition, the

examples should help you to understand how to configure and use a

serial port if you run into problems with an application that is not

very close to one of the examples itself.

9

Chapter 2

SYSTEM CONFIGURATIONS

This chapter c,ntains general rules governing the attachment and

powering vf various configurations. The reasons for the procedures

should be apparent frvm the explanations given in this chapter. but

if the reasons are not apparent a more complete explanation of

the principles of operation may be cvnsulted in APPENDIX li.

Communicativn between a peripheral and the computer must conform to

the limitations imposed by the hardware. For example. the speed of

comunication is always limited. The limitations are different for

different peripherals. The computer must "know" what peripheral it

is communicating with and how to compose and interpret messages to

and from that peripheral. Some of the information abvut the

peripheral that permits the computer to handle it is in computer

memory, but initially comes from different sources. For example, the

diskette and the disk drive are the source of information for

handling communications with the disk drive. This information is

passed to computer memory when the computer console is powered on,

provided the disk drive is already powered on and contains an

appropriate diskette.

Information about the serial ports of the ATARI 850 Interface Module

is contained in the Interface Module itself and is transferred to

computer memvry when the computer console is powered on. Therefore,

you must power on the Interface Module before you power on the

console, if you intend to use a serial port.

You may unnecessarily boot the Interface Module. That is, you may

turn on the Interface Module then the computer console, but not use

a serial port. This does no harm, but it "wastes" RAM (1762 bytes)

by loading the unused RS-232-C handler.

You may wish to use the Interface Module to interface to a non-ATARI

device. In that case, you must make sure that the device is

compatible with the Interface Module. You must examine the

specifications of your device. You may also have to make or specify

a cable to connect the Interface Module with your device, and

APPENDIX 11 contains guidelines and connector information on this

subjecr

10

Hook-up

The general rule: order of hook-up, in itself, has no importance.

Simply hooking up a peripheral to the Interface Module has no effett

on its operation and is not recognized by the system. It is only

when the peripheral is powered on that it has any effecr To have an

effect, the peripheral must be powered on. Howeven an effect, once

exerted by having a powered peripheral, is not necessarily canceled

by turning the power off or disconnecting the hook-up. What is

important, as a general rule, is the sequence of powering up the

various components of the system.

Power-up

You should turn on the power to any peripheral that you intend to

use before you turn on the power to the console. This general rule

has exceptions which will result in your taking a pointless

precaution. For example, the 825 Printer can be powered on at any

time. When the Interface Module and a Disk Drive are in your system,

they will both have to boot up before they can be used, so they both

have to be powered on before you power on the console. All of the

ATARI Disk Operating Systems, except DOS I, are compatible with the

RS-232-C handler in the Interface Module.

If you have DOS I, you cannot use the Disk Drive with the Interface

Module. You should obtain DOS II (or a later DOS).

If you have DOS II or a later DOS), power up the Disk Drive before

the Interface Module.

If you have a non-ATARI DOS, there is no assurance that it will

operate the Disk Drive with or without the Interface Module. You

must consult the DOS documentation for guidance.

Configurations Using Only the Printer Port of the Interface Module

Turn on the computer console before the Interface Module, since the

Interface Module does, not need to be booted in order for the

computer to access the Printer Port but the Interface Module must be

powered on in order to transfer communication between the computer

and the printer. The printer handler is in the computer Operating

System, not in the Interface Module ROM.

 11

IF YOU HAVE MORE THAN ONE ATARI PRINTER

You may connect two ATARI printers to the computer at the same time.

Howeven the printer handler built into the Operating System can

control only one printer at a time

Therefore, to avoid errors, make sure you turn the power on to

only one printer at a time.

You may switch printers at any time, even with the computer turned

on.

If you have no printer connected to the ATARI 850 Interface Module

parallel printer port, or if that printer is turned off, then the

Interface Module will not act like a printen and you may use another

printer connected to the system.

Configurations Using only the Modem With the ATARI 850 Interface

Module

You must have an appropriate cartridge in the console (e.g.,

Telelink I) and you must power on the Interface Module before the

console. With TeleLink I, you may not use a Disk Drive.

If you are using a Disk Drive as well as the Modem (with a ompatible

cartridge), the DOS on the diskette in the Disk Drive must be DOS II

(or a later version). DOS I is not compatible with the Interface

Module. You must refer to the documentation for the version of DOS

that you are using.

The ATARI 830 Modem is acoustically coupled. Both input and output

signals are transformed into tones in the audible range.

Consequently, the modem may respond to extraneous sounds in the

environmenr The rubber muffa on the modem attenuate environmental

sounds, but loud sounds or nearby percussive effect (such as tapping

the table) are quite likely to be received and/or transmitted as

(false) signals. You should place the modem in a location to

minimize unintended effects of this nature.

12

Table 2.1 Power-up procedure with various common configurations

System includes

400 or 800, ATARI

850 and:

Cartridge

DOS*

Comments

ATARI 825 Printer

Language

(BASIC,

Assembly/Edi-

ton etc.)

No

No restriction on power-on

sequence.

ATARI 830 Modem

TeleLink I

No

Turn on ATARI 850, then

console.

ATARI 825 Printer

ATARI 810 Disk

Drive

Language

Yes

Turn on ATARI 810, then

console, then ATARI 850.

Position of ATARI 825 in

sequence does not matter.

ATARI 825 Printer

ATARI 830 Modem

TeleLink I

No Turn on ATARI 850, then

console.

Position of ATARI 825 in

sequence does not matter.

ATARI 830 Modem

ATARI 810 Disk

Drive

Language

Yes

Turn on ATARI 850 and Disk

Drive, then console.

ATARI 825 Printer

ATARI 830 Modem

ATARI 810 Disk

Drive

Language

Yes

Make sure you have DOS II

Note: DOS requires a machine with 16K RAM. The amount of RAM left

for your BASIC program is 16K less the RAM required for OS

(about 3K), Interface Module handler (1762) and BASIC (about

8K). The RAM used by DOS can be determined exactly by

performing PRINT FRE(0) with and without DOS loaded - the

difference in the numbers printed is the DOS size.

 13

Chapter 3

SERIAL PORTS

The configuration and use of serial ports is a complex matter. You

must keep in mind a large number of details and you must observe

complicated procedure, exactly. We have tried to reduce the amount

af technical detail in this chapten giving only sufficient detail to

show the structure and effect of commands and how they relate to

each other. The supportive detail will be found in the Appendices.

Once you are familiar with capabilities of the Interface Module, you

will probably make most freqeuent reference to the Appendices.

The RS-232-C standard defines a range of values of parameters of a

communication link. This is described more fully in APPENDIX 1. The

ATARI 850 Interface Module is the device used in ATARI Personal

Computer Systems to set the values of these parameters. The

Interface Module organizes the bit stream of communication according

to the software-coded intructions.

When we refer to a communication port as an RS-232-C port we mean

that signals to/from that port conform to the RS-232-C standards. We

also use the adjective "RS-232-C - compatible" when the

communication conforms to essential aspects of the RS-232-C

standard, with the implication that the channel may lack some

features of the standard and may incorporate other features not

included in the standard. Perhaps the most important aspect of the

standard is the specification of voltage levels corresponding to

mark and space. Accordingly, many other publications may use the

term "RS-232-C - compatible" to mean "using the voltage levels in

the RS-232-C standard".

Using software instructions to set the particular standard or

"protocol" is called "configuring the port". In configuring the port

you may set the following:

Baud

Number of bits per word sent/received

Number of stop bits per word sent

Whether the incoming control signals DSN CTS and CRX are monitored

Whether input parity is checked

Whether output parity is set

Whether Line Feed is added after every Carriage Return sent

Translation of the word being sent or received (3 types of

translation)

Whether the outgoing control signals DTN RTS are used

These are shown as three groups, corresponding to the three

configuration commands, otherwise, the division into groups is

arbitrary.

14

Default Conditions

If you do not configure the port, the system sets default values of

the port variables, as follows:

300 Baud

8 bits per word

1 stop bit per word transmitted

Input parity is not checked

Output parity bit most significant bit (bit 7) is set to zero

Linefeed is not added after every Carriage Return Light-translation

(see APPENDIX 6)

Outgoing control signals DTN RTS are not ser

Each of these groups of conditions can be changed with a

configuration command.

Limitations on Port Configurations

The ports have different signals available, as shown in Table 2. 2.

Table 2.2 Available signals on ports 1, 2, 3 and 4

PORT 1 PORT 2, 3 PORT 4

DTR

RTS

XMT

DTR

XMT

XMT

DSR

CTS

CRX

DSR

RTS

If you are using the modem set for Half Duplex, connected to a port

of the Interface Module, then the port when outputing must be

configured for Block Output and when inputing must be configured for

oncurrent Mode I/O at not more than 300 Baud.

Other limitations on port configurations are imposed by using a port

in the concurrent I/O mode. These limitations are described in the

following section under the heading of Warnings and Restrictions.

Configurations with 5-, 6-, and 7-bit words are subject to

limitations in other I/O parameters; these are described in the

section on BASIC I/O staternents, GET, INPUT, PUT and PRINR

15

Mode - Block Output or Concurrent I/O

There are two different modes of using the a port, called BLOCK

OUTPUT and CONCURRENT I/O.

Block Output:

Block output is used only for output from the computer to the ATARI 850 Interface Module. A block output is

effected by the BASIC commands PRINT and PUT to a properly OPENed port.

The contents of the Buffer can be sent at any time (before it fills)

by the Command FORCE SHORT BLOCK, described in the section called

Forcing Early Transmission of Output Blocks.

Concurrent I/O Mode:

To receive information from the ATARI 850 Interface Module you must

use this mode. It supports full duplex communication with the

Interface Module. To use this mode, first OPEN a file for I/O then

give the START CONCURRENT I/O MODE command (XIO 40), then use the

BASIC commands INPUT, GET, PRINT or PUR In this mode, BASIC is

executing other instructions while I/O is proceeding. Incoming

characters from a port are stored in a buffer. You may get the

contents of the buffer at any time by INPUTing from that port.

Warnings and Restrictions

You must observe certain precautions when you use Concurrent Mode

I/O. The only I/O opeations that are permitted with this mode are

GET, INPUT, PUT, PRINT, STATUS and CLOSE to the OPENed port, and I/O

to the Keyboard and Screen (which do not involve any peripheral

device).

Using one Port for concurrent I/O prevents the use of any other Port

of the Interface Module, including the Printer Port. The other ports

remain inaccessable until you terminate the concurrent I/O mode. You

terminate concurrent I/O by CLOSEing the port.

During Concurrent I/©, incoming data may overflow the conputer's

buffer. In that case, data is losr Methods for avoiding loss of data

in this way are described in APPENDIX 8.

After you have started Concurrent Mode I/O, you can not configure

a port. Therefore, all configuration commands (XIO 34, XIO 36 and

XIO 38) must be executed before a START CONCURRENT MODE I/O command.

16

PRINT

or
PUT

32-byte

BUFFER

ATARI

850

RS-232-C

Compatible

Device

32-bytes blocks

Once set, configured parameters will not change until you change

them with an appropriate command. Pressing SYSTEM RESET on the

computer console will NOT reset any parameter to its default value.

Turning off the power on the Interface Module may reset some

parameters but not others and may result in peculiar operation as

information about some of these parameters is saved both in the

computer and in the Interface Module. Turning off the power to the

Interface Module during a session with the computer is not

recommended.

Turning off the power to the computer also resets the Interface

Module. When you turn the computer back on, and the Interface Module

auto-boots (see the section on automatic bootstrapping in APPENDIX

11), all of the above parameters will have reverted to their pre-set

default values.

Configuring a Port

If any default condition is to be changed, the port must be

configured before it is used. Configuring a port is accomplished by

one or more commands described in this section. There are three

principal commands. Each of these three is concerned with several

configuration variables. The parameters of the commands are coded to

signify different values of the several variables. The details of

the coding are presented in the Appendices.

A particular default condition is Block Output Mode in which, of

course, you can not input data. To input from a port you must put it

into concurrent I/O mode with the START CONCURRENT I/O command.

Thus, the START CONCURRENT I/O command is a configuration command.

It is different from the other configuration commands in that the

port to which it applies must be OPENed firsr Moreoven it is much

more complex than other configuration commands. You should think of

the START CONCURRENT I/O mode command as being a configuration

command in one aspect, and as having more important effects on other

aspects of using the configured port, and, indeed, all the ports.

Setting the Baud, word size, stop bits and ready monitoring

Format: XIO 36, #Channel, Aux1, Aux2, "Rn: "

Example: XIO 36, #1, 138, 6, "R: "

This command sets the Baud rate, word size, and number of stop bits

in transmitted messages. It also controls the monitoring of incoming

control signals.

Channel is the number of the Channel that BASIC commands for this

port must use.

Aux1 is coded to specify 3 variables - Baud, word size and the

number of stop bits. The coding is given in Tables 1, 2 and 3 in

APPENDIX 5.

 17

Aux2 is coded to specify which of the incoming control signals

should be checked. These signals are DSR (Data Set Ready). CTS

tClear to Send) and CRX. (Carrier Detect>. The coding is given in

Table 4 of APPENDIX 5.

Rn: is the port being configured. n is 1, 2, 3 or 4. R: is

interpreted as R1:

Setting Translation Modes and Parity

Format: XIO 38, #Channel, Aux1, Aux2, "Rn: "

Example: XIO 38, #2, 64, 33, "N : "

This command sets the various aspects of translation of message

coding between.

38 specifies this I/O command.

Channel is the number of the Channel that BASIC commands for this

port must use.

Aux1 is coded to specify the translation mode, input parity mode,

output parity mode and whether a Linefeed is added after Carriage

Return. The coding is given in Tables 1, 2, 3 and 4 of APPENDIX 6.

Aux2 is the number equivalent to the "won't translate" character in

one translation mode. See APPENDIX 6.

"Rn: " is the port being configured. n is i, 2, 3 or 4. "R: " is

interpreted as "R1:"

Controlling the Outgoing Lines DTN RTS and XMT

Format: XIO 34, #Channel, Auxi, Aux,, "Rn: "

Examp1e: XIO 34, #,, 160, 0, "R1: "

This command determines the use of XMT and the outgoing control

lines DTN RTS.

34 specifies this I/O command.

Channel is the number of the Channel that BASIC commands for this

port must use.

Aux1 is coded to specify control of DTN RTS and XMR The coding is

given in Tables 1, 2 and 3 of APPENDIX 7.

Aux2 is not used by this command. It may be set to zero.

"Rn: " is the port being configured. n is 1, 2, 3 or 4. "R: " is

interpreted as "R1:"

18

Using a Port

This section describes the use of a port, including the instructions

OPEN, CLOSE, and the BASIC I/O commands GET, INPUT, PUT and PRINT,

LIST, SAVE. These commands should all be familiar to you from your

previous use of BASIC.

Two new commands, specific to RS-232-C ports, are described, namely,

START CONCURRENT I/C1 tXIO 40> and FORCE SHORT BLOCK (XIO 32).

The use of the STATUS command is also described in this section. The

command should be familiar from your previous use of BASIC, but the

information that you can obtain about an RS-232-C port by using the

STATUS command is, of course, new.

Opening an RS-232-C Port

You must OPEN a channel to an RS-232-C port before you can read from

it, write to it, start concurrent mode I/O or read its status. You

may configure a port without having opened ir

The OPEN command in BASIC is:

OPEN #Channel, Aux1. Aux2, "Rn: "

Channel is the number of the channel that other BASIC commands for

the opened port must use. Any channel number (1 through 7) may be

used. Do not use a channel if another file is already open through

ir

Aux1 specifies the direction of the port:

5 signifies that you are going to use the port for input only

(concurrent mode)

8 signifies that you are going to use the port for output only

(block mode)

9 signifies that you are going to use the port for output only

(concurrent mode)

13 signifies that you are going to use the port for input and output

(concurrent mode)

Aux2 is not used in this command, make Aux2 zero.

Rn is the RS-232-C port being opened. n is 1, 2, 3, or 4. R: is

interpreted as R1: For a given port no more than one channel may be

open at one time.

 19

Closing an RS-232-C Port

Having OPENed and used a port you may disconnect the channel by

closing the port with the BASIC command CLOSE, as follows:

CLOSE #Channel

Channel is the channel number previously OPENed.

CLOSE is also used to terminate concurrent mode I/O. In this case

the channel number is that one through which the concurrent mode I/O

is active. CLOSE is the only way to terminate concurrent mode I/O

from a program.

To restart concurrent mode I/O to the port you must first re-OPEN a

channel to ir

When you CLOSE the channel, all data in the input buffer is lost,

and all data in the output buffer is senr

Closing a file does not change the configuration of the channel. You

may change any configuration parameters after closing the port.

FAILURE TO TERMINATE CONCURRENT MODE I/O PROPERLY BEFORE ATTEMPTING

I/O TO OTHER PERIPHERALS (OR EVEN OTHER RS-232-C PORTS) WILL

PROBABLY RESULT IN PROGRAM FAILURE. THE ONLY WAY TO RECOVER FROM

SUCH FAILURE IS BY TURNING TNE COMPUTER OFF THEN ON AGAIN, WHICH

RESULTS IN THE LOSS OF INFORMATION IN MEMORY.

Pressing SYSTEM RESET on the computer console closes all open

channels and re-establi.shes the I/O system's registers and

pointers. This method of closing files results in the loss of data

being held in input and output buffers. The Interface Module may be

"interrupted" by the SYSTEM RESET and so transmit only part of the

character being sent at the time SYSTEM RESET was pressed. Another

possible effect of SYSTEM RESET is a short burst of random data to

an active concurrent mode RS-232-C port.

The exclusion of peripheral I/O to anything other than the active

concurrent mode I/O port applies to the CLOSE command. If you have

any other peripheral device or RS-232-C port open, you cannot CLOSE

it while one open port is in the concurrent mode.

If you do not close files with CLOSE, BASIG will close them when it

interprets END or comes to the end of the program. Howeven you do

not know the order of the closing of files that BASIC will impose.

BASIC will as likely as not close another channel before it closes

the channel of the active concurrent mode I/O port. If it closes

another channel first, your computer will "die", ,ust as it would in

response to any other attempt to perform I/O to a channel that is

not the active concurrent mode I/O channel.

Therefore, ALWAYS MAKE SURE THAT AN ACTIVE CONCURRENT MODE I/O

CHANNEL IS CLOSED BEFORE ANY OTHER CLOSES CAN OCCUR.

20

Starting Concurrent I/O Mode

Format: XIO 40, #Channel, 0, 0, "Rn: "
Example: XIO 40, #1, 0, 0, "Rn: "

This command is used to start concurrent I/O mode.

40 specifies this I/O command.

Channel is the number of the Channel

n is the port number

With this command the input buffer is in the handler in the

computer. The buffer holds 32 bytes. For some purposes a longer

buffer is more convenienr APPENDIX 8 shows how to specify any size

of buffer. The BASIC coding is more complex.

BASIC I/O Statements GET, INPUT, PUT AND PRINT

The BASIC input statements are GET and INPUR The BASIC output

statements are PUT and PRINR Please refer to the BASIC Reference

Manual for details about these statements. In this context, PRINT

and INPUT must always include the proper channel number. The formats

are given here as a reminder.

Formats: GET #Channel,var

INPUT #Channel {; }{avar}[{avar}...]

 {, }{svar}[{svar}...]

PUT #Channel, aexp

PRINT #Channel{;} exp [, exp...]

 {,}

ThiS section is about how these statements are used with the Serial

Ports. Before reading this section you should read and understand

the material on configuring the ports, including Appendices, and the

sections on opening and closing ports and starting concurrent I/O.

INPUT and PRINT are line-oriented. They process a "line" of

characters at a time. A line ends with an ATASCII EOL (End-of-Line)

character. The translation mode you set up (or the one pre-set for

you) can be used to translate the EOL character to an ASCII CR

(Carriage Return) on output, and CR to EOL on inpur AN EOL IS

REQUIRED FOR INPUT - THAT IS, A BASIC INPUT STATEMENT WILL NOT

FINISH UNTIL AN EOL IS READ IN. If your input does not have EOL, or

if your translate mode will not produce it on input, you should not

use INPUT, use GET instead.

Remember that if you place a comma or semicolon at the end of a

PRINT command, EOL is not produced when the PRINT command is

executed.

 21

When you use a BASIC input statement, the input data must be in the

proper form for BASIC. For example, if you read into numeric

variables, the input must consist of digits with optional sign,

decimal point, and exponenr Multiple input numbers must be separated

by commas. For more details see the BASIC REFERENCE MANUAL.

GET and PUT are character-oriented. You can input or output only one

character at a time. This is much slower than INPUT and PRINT, but

it gives you more control over what you send and receive. You may

alternate between the different types of BASIC input statements, and

between the output statements, to the same port if you need to. To

do input and/or output, you must have opened a channel to the port

and you must have specified the necessary in, out, and concurrent

permissions when you opened the file (see the section about OPEN).

To do input, you must also have started the concurrent I/O mode.

Output may be done either in BLOCK MODE or in CONCURRENT MODE. When

you do output in block mode, you MUST NOT start concurrent mode I/O

before doing the outpur For this reason, full duplex operation is

not allowed with block mode outpur

Block mode output sends your data out to the Interface Module in 32-

character blocks (whenever 32 characters have been collected by the

handler from your PUT or PRINT statements). The Interface Module

then sends the characters over the RS-232-C port. The computer waits

while the Interface Module sends the block over the RS-232-C port.

Between blocks the computer's I/O port is not being tied up as it is

when concurrent mode I/O is active, so if gou use block mode there

are no restrictions on using other I/O devices at the "same time."

Block mode is the only mode in which you can transmit 5-, 6- or 7-

bit words (the word size option of the SET BAUD RATE command will

not work with concurrent mode output). 8-bit words may be

transmitted in either block or concurrent mode.

NOTE: On rare occasions, the Operating System may resend a block to

the Interface Module. This may result in part or all of the

block being sent twice to the RS-232-C peripheral. To avoid

this problem, use concurrent mode outpur

Concurrent mode output does not work in blocks. Instead, whenever

your program tries to output any characters to the Interface Module,

they are first moved into a 32-byte buffer. As long as there are any

characters in the buffer which have not been sent they will be sent

as fast as possible. This "draining" of the buffer takes place con-

currently with execution of other BASIC statements in your program.

The only time your program will be held up is when you try to output

characters faster than they can be transmitted at the Baud rate you

are using and the buffer fills up. Your program will be held up

until space becomes available in the buffer. If you do not want your

22

program to be held up you may use the STATUS command to find out how

much buffer space you have used and let your program use that

information to decide whether or not to execute an output statemenr

Concurrent mode input may be used at the same time you are using

concurrent mode output (full duplex operation). Note that block mode

output is NOT allowed if you do this. Also note that 5-, 6- or 7-bit

words can only be input in half-duplex mode. If you select anything

other than 8-bit words you cannot output and input them at the same

time. 5-, 6- and 7-bit words can be input at speeds up to 300 Baud.

Concurrent mode input data is placed in the input buffer as it is

received from the RS-32-C port. Your program must get the data out

of the buffer with GET or INPUT before the buffer fills or data will

be lost from the buffer. If the buffer fills, the data that has been

in the buffer the longest will be replaced by the newer data. What

your program will see is that characters are missing. The STATUS

REQUEST command will tell you if data has been lost this way. STATUS

REQUEST can be used to find out how many characters are in the input

buffer so you can program the machine to decide when to do an INPUR

STATUS can also be used to determine some kinds of errors in data

reception and parity. This is fully described in the section on the

STATUS command.

Other I/O commands from BASIC - LIST, SAVE, LOAD AND ENTER

There are a number of BASIC statements which perform "compound I/O"

operations. That is, their operation can be thought of as consisting

of combinations of the other I/O operations. These combinations are

built into BASIC so you cannot change the ways these statements

work. The statements are LIST, SAVE, LOAD and ENTER. Note that each

of these statements inputs or outputs part or all of your PROGRAM,

unlike, say, the PRINT statement, which outputs your program's DATA

or variables. Z,his distinction is not important here, what we are

lvoking at in thi5 5ection is how these statements work with the RS-

232-C ports, not what data they transfer.

Each of these statements can be thought of as consisting of first an

OPEN, then one or more input or output operations, then a CLOSE.

These operations do NOT include any configuration of RS-232-C ports,

and they do not include any START CONCURRENT MODE I/O action. Thus

you cannot use the two input statements (LOAD and ENTER) with the

RS-232-C ports. Instead, you may enter your program as data, to

either a program you write in BASIC, or to the ATARI TELELINK II

smart terminal cartridge, and put the program on cassette or

diskette. Then you can ENTER the program to BASIC from the cassette

or disk.

Since the configuration commands may be executed without opening a

channel to an RS-232-C port, you can configure the Baud rate.

translation modes, and so forth, befvre you execute a LIST or SAVE

to the port. (SAVEing a program to the RS-232-C port will send the

program in BASIC'S internal 8-bit tokenized format - this will

probably, only be useful if you are sending the program to another

ATARI computer).

 23

 Since LIST has no implicit Interface Module status checking, the

program will simply be sent out at the maximum rate allowed by the

Baud rate you have selected. The receiving device must therefare be

able to receive the data at that rate.

Forcing early transmission of OUTPUT BLOCKS

If you are using the block output mode, your output characters will

be place in a 32-byte buffer and transmitted:

1) when the buffer fills up
2) when you close the channel to the RS-232-C port
3) when a CR (decimal 13) is placed in the buffer.

On occasion, you may want to force the sending of the information in

the buffer. For example, if you have specified the Append LF trans-

late option, the LF will be sent at a different time, later than the

CR. You may want to send the LF immediately if the external device

is a terminal. As another example, if you are using the DSN CTS, or

CRX monitoring feature to avoid sending more characters to a device

than it can handle, you can use the FORCE SHORT BLOCK operation to

send your characters one (or a few) at a time. By sending a few

characters at a time, you insure that the device stays "ready" and

properly receives all the characters sent to ir (See the overview

section, the Baud section, and the STATUS REQUEST section for more

information on the monitoring of DSN CTS and CRX lines.)

The FORCE SHORT BLOCK operation is only valid if you are using block

output mode. If you are using concurrent mode, you cannot use this

command.

If you issue a FORCE SHORT BLOCK command when the buffer is empty,

no action will be taken. Doing this is not an error. Since you can

alternate output to two RS-232-C ports when using block output mode,

you can also alternate FORCE SHORT BLOCK commands from one port to

another. The ports must be opened through different channels, of

course.

The BASIC form of the FORCE SHORT BLOCK command is:

XIO 32, #channel, Aux 1, Aux2. "Rn: "

32 specifies the FORCE SHORT BLOCK command.

Channel is the channel through which you have OPENed the RS-232-C

port.

Aux1 and Aux2 are ignored in this command. In general, you should

specify zero for them.

Rn is the port whose output buffer you are forcing. n is 1, 2, 3

or 4. R: is interpreted as R1:

24

STATUS command

The STATUS command is useful for determining many facts about an RS-

232-C port and the state of the Interface Module. You can check for

certain specific error conditions, to find out why certain errors

have occurred, to check parity, and so on. The STATUS command allows

you to determine the amount of data in the input and output buffers

while concurrent mode I/O is in effecr STATUS also allows you to

check the state of the RS-232-C control lines DSN CTS, CRX (and the

state of RCV at the time you issue the STATUS command).

The STATUS command may be issued only through a channel opened to an

RS-232-C port. You may issue the command whether or not concurrent

mode I/O is in effect. If this mode is in effect to a port, you

cannot obtain status information (via the STATUS command) from

another port.

The information returned by a STATUS command is different according

to whether or not concurrent mode I/O is in effecr When concurrent

mode I/O is in effect, the STATUS command allows you to see how full

your input and output buffers are, but you cannot check on the state

of the control lines DTN CTS, CRX and RCV. (RCV can be directly

checked, howeven by PEEKing at the computer's serial I/O control

register). When concurrent mode I/O is not in effect, you get no

information about buffers, of course, but the state of the control

lines can be checked. There are other minor differences in the

effect of the STATUS command in the two cases.

In BASIC, the STATUS REQUEST command is implemented as a "compound"

command--that is, you must code multiple BASIC statements to get the

status. The first, of course, is the STATUS command. This is

followed by uses of the PEEK function to retrieve status which is

left in a small status area by the STATUS command.

The STATUS command looks like this in BASIC:

STATUS #channel, avar

Here, #channel specifies the channel (1-7) through which you have

OPENed the RS-232-C port. You may issue this statement to the port

before andlor after concurrent mode I/O is started.

Avar is a variable which will get the status OF THE STATUS STATEMENT

ITSELF. That is, avar will be set to the input/output system's one-

byte status that is returned when BASIC calls the I/O system - since

the I/O system call here is the STATUS, the value returned is the

I/O system`s determination about how the STATUS command wenr This

number is the same kind of number returned to BASIC by the I/O

system after ANY I/O call, but in the other BASIC I/O statements,

BASIC looks at the number itself to see if the I/O was completed

without error. The STATUS command simply puts the number in the

avar.

25

This status number can be interpreted just like one of the ERROR

codes - for example, you will get 130 if you neglected to OPEN the

channel, since an unopen IOCB does not specify any peripheral device

and error 130 means "Nonexistent Device Specified". The status

number will be 1 if the STATUS call was completed without error. The

status number will be some error number greater than 127 if there

was some problem with the STATUS call.

If the STATUS call is successful, up to four bytes of information

are stored in locations 746, 747, 748 and 749. Location 746 always

contains error status bits relating to the status history of the RS-

232-C port. The other three locations will contain buffer use

information if concurrent mode I/O is active. If concurrent mode I/O

is not active, 747 contains status bits relating to DSN CTS, CRX,

and RCV on the RS-232-C port and locations 748 and 749 hold nothing.

Table 1 of APPENDIX 4 shows the definition of the error bits in

location 747. The table gives each bit a decimal value which shows

how that bit, if "on" or 1 ,as opposed to "off" or 0), adds to the

total value of the byte when interpreted as a decimal number. The

meaning of each of these error bits are discussed in APPENDIX 4, but

first here is a BASIC example showing how you can check one of the

bits:

160 STATUS #1, IGNORED

170 LET ERRORBITS = PEEK(746)/128

180 IF INT(ERRORBITS) <> INT(ERRORBITS+0.5) THEN PRINT "OVERRUN!"

First the STATUS call is made, and the status of the STATUS goes

into the variable IGNORED (which we don't check here - we assume the

STATUS call itself is all right). Statement 170 takes the error bits

from location 746 and divides it by twice the decimal number

representing the bit being checked (as taken from Table I). In this

case, we're checking for the BYTE OVERRUN erron whose number is 64,

so we divide by 128. If the bit is 1, then the byte has a 64 in it,

and after dividing by 128, the result has 1/2 (0.5) in ir When we

add 0.5 in the next statement, we add a 1 to the result of the

second INR The INTs not being equal thus means we have found a BYTE

OVERRUN. If the error bit were not there, the 0.5 would add to 0 (in

the 1/2 position) and the second INT would be equal to the firsr

26

APPENDIX 1

WHAT IS RS-232-C?

RS-232-C is a technical standard of the Electronic Industries

Association (EIA). Published in August of 1969, it is titled

"Interface Between Data Terminal Equipment and Data Communication

Equipment Employing Serial Binary Data Interchange." The standard

specifies electrical signal characteristics and names and defines

the functions of the signal and control lines which make up a

standard interface, called RS-232-C.

Figure 1 shows, diagrammatically, the kind of hook-up that RS-232-C

was designed to standardize. A "DATA TERMINAL" is at each end of the

communication link. The data terminal either generates or receives

data (or does both); it could be a keyboard/screen "terminal" in the

normal sense of the word; it could be a computer; and so on. The

idea is that the data terminal is at the end of the communication

link--hence "terminal". Howeven the data terminal need not really be

at the end - you may really want to think of "data terminal" as just

the name of one of the two ends of an RS-232-C connection.

At the other end of an RS-232-C connection is the "DATA SET". In the

example of Figure 1, each data set takes data from the data terminal

it is connected to and sends/receives the data over the

communications link. The most familiar example of a data set is the

MODEM, which takes data from a terminal and converts it for sending

and receiving over a telephone line.

The ATAR1 Personal Computer System with the 850 Interface Module

should be thought of as a unit comprising an RS--232-G Data

Terminal.

FIGURE 1: COMMUNICATIONS HOOK-UP SHOWING ROLE OF RS-232-C

27

Data
terminal

(terminal)

DSR�RTS
CTS�DTR

CRX DTR

RS-232-C
link

Data set

(modem)

Data set

(modem)

Data

com

muni

cation

link

(telep
hone)

RTS�DSR

DTR�CTS

 => CRX

Data
terminal

(terminal)

RS-323-C
link

The data-set/data-terminal distinction should be kept in mind

because the RS-232-C interface is DIRECTIONAL. That is, each line in

an RS-23C- interface has a direction - one device drives the line

(sends information) and the other receives the information. Each

line in an RS-232-C interface is defined as being driven by either

the data-set end or the data-terminal end.

The RS-232-C stdandard defines some 20 signalling lines or

"circuits", as the standard refers to them. Most of them are

optional and rarely used. Even with many omissions and deviations

from the standard, a link may still be referred to as RS-232-C. It

is more common to refer to the link loosely as "RS-232-C" on "RS-

232-compatible".

The most commonly used RS-232-C lines are given in Table 1. The

table shows the name of each line in the RS-232-C standard and the

commonly used mnemonics.

TABLE I The most common RS-232-C circuits

Direction

Line

name

 Terminal Modem

Description

Abbreviation

(circuit)

BA

Transmitted Data

XMT

BB

Received Data

RCV

CA

Request To Send

RTS

CB

Clear To Send

CTS

CC

Data Set Ready

DSR

AB

(none)

Signal Ground

-

CF

Signal (carrier) Detect

CRX

CD

Data Terminal Ready

DTR

28

It is most common practice to use common names or abbreviations for

the RS-232-C signals, and not the two-letter names in the official

standard. Thus the following happens: transmit and receive, for any

given device, are RELATIVE TO THAT DEVIGE. That is, data goes out of

a device on XMT and comes in on RCV. Thus to connect two RS-232-C

devices when given the common names of the signals, you should

connect XMT to RCV (in one direction) and RCV to XMT (in the other

direction). If one of the devices is wired as a data set and the

other as a data terminal, then you should connect DTR to DTN DSR to

DSN RTS to RTS, and so on. If, on the other hand, they are each

wired as data terminals, you should be careful how things are

connected - more on this later.

Signal Ground connection must always be made. (Notice that RS-232-C

requires that the ground potential of the two devices be equal, that

is, their grounds are connected. Devices for which this requirement

cannot be met cannot be connected via an RS-232-C interface).

Data Terminal Ready is used by RS-232-C to allow the terminal to

signal its readiness to send or receive data. This is a signal to

auto-answer modems that they have permission to answer the ringing

of the telephone line.

Data Set Ready is used by the data set to signal its readiness to

send or receive data. This indicates that communications are

established.

Request To Send is used by the data terminal to tell the data set it

wishes to send data. Some modems (Bell 102 for example) require this

line to switch directions.

Clear To Send allows the data set to signal its readiness to pass

data from the data terminal.

Signal (carrier) Detect allows the data set to tell the data

terminal that the communication link is established. This often

differs little from data set ready, except that data set ready

usually refers to "telephone off the hook" (answered) whereas

carrier detect means something like "I hear the modem at the other

end and we can talk now". When carrier detect goes OFF, data set

ready OFF usually follows a few seconds laten indicating that the

other end has "hung up."

In normal operation, DTN DSR and CRX are all ON. For full duplex

operation RTS and CTS are also both ON. Howeven it is often not

necessary to have all these lines be ON - either one or the other

devices on the RS-232-C connection does not have all the lines, or

it is OK to ignore them (one of the properties of the RS-232-C

standard is that not all of it needs to be implemented -it's

perfectly OK to leave parts out). To operate the ATARI 830 Modem,

for instance, none of the control lines need to be used. In fact,

the ATARI 830 Modem ignores DTR and RTS, and it turns DSN CTS and

CRX on and off together (with carrier).

 29

Note that the communication link shown in Figure 1 is not defined by

RS-232-C. In particulan this link seldom has more than the

"equivalent" of XMT and RCV - that is, only data lines and no

control. Howeven as often as not this link is a full duplex link, so

data can go both ways simultaneously. ASCII characters are the most

common data sent, so the data sent each way can be either "control"

data or "data" data.

With full duplex operation, two devices can "handshake" with data in

various ways. Common terminals usually do not have an internal

connection between the keyboard and display (or they have a switch,

usually called half/full duplex, to make or break this internal

connection) so when talking with a computer in full duplex mode (the

most common mode), the computer at the other end "echoes" (sends

back) each character to be displayed as it is typed. This allows you

to see exactly what the computer at the other end receives. It also

allows the computer at the other end to decide NOT to let you see

what you have typed, as in "suppressing" the echo of a password.

Half duplex operation means that somewhere along the communications

path, data may pass only one direction at a time. Not all parts of

the communication, path need be half duplex, but if any part is,

then the whole system pretty much has to send data only one way at a

time. In half duplex mode, the computer at the other end does not

echo back what you type. In this case, in order to see what you

type, the connection from keyboard to screen must be set locally,

that is, set your terminal to "half duplex. " (Note: the ATARI

TeleLink I terminal emulation cartridge does not have the equivalent

of a half/full switch. Howeven the ATARI 830 Modem does have such a

switch, and when it is placed in the half duplex position, it echoes

any data sent out over the phone bark to the ATARI computer

console).

A common "handshake" that requires full duplex is the XOFF/XON

(transmit off/transmit on) handshake. The receiver of data can send

XOFF to the sender to ask the sender to pause the data transmission,

and XON to resume. This allows the user of a screen terminal to stop

the data so he can read the screen, and it allows a computer which

is receiving data from another computer to effectively control the

rate at which it can accept data. There are many variations of XON

and XOFF, including ACK/NAK and the BREAK signal, among others.

RS-232-C compatibility has come to cover many devices which are not

"data sets" or "data terminals", particularly in the personal

computer world. What this usually means is that the device conforms

to the ELECTRICAL RS-232-C specification, which is shown in Table

II. Sometimes such devices (which include printers, plotters,

digitizing pads, and many other interesting devices) also have lines

which are called DSN DTN RTS aud so on, but their use is often not

covered by the RS-232-C standard and usually the use is specific to

the device. One such use is to signal readiness to accept data from

your computer (as opposed to sending XOFF/XON over a data line).

30

Unfortunately, there is no standard of how many characters after the

line goes OFF that the device will accept, nor a good way to

determine where to start up again when the device becomes ready. You

will have to familiarize yourself with your device's characteristics

and then program you ATARI 400/800 computer and the 850 Interface

Module accordingly.

TABLE II RS-232-C ELECTRICAL SPECIFICATIONS

Type of signal

First state

-24 Volts t -3 Volts

Second state

+3 Volts to +24 Volts

Binary signal

1

0

Signal condition

MARK

SPACE

Control function

OFF

ON

It is common practice when Using the 25-pin D connector most used

with RS-232-C to connect XMT to pin 2, RCV to 3, RTS to 4, CTS to 5,

DSR to 6, common signal ground to 7, CRX to 8, and DTR to 20.

However, these conventions may not be followed, and you may also run

into cases where the other pins in the connector have either

entirely unrelated functions (such as other types of communication

standards on the same connector) or possibly related functions (such

as setting the Baud rate by connecting two pins).

READ THE INSTRUCTIONS OF ANY DEVICE YOU INTEND TO CONNECT TO THE

ATARI 850 INTERFACE MODULE CAREFULLY!

You may have to make your own cable to connect the device to the

Interface Module.

Believe it or not, the RS-232-C standard does not specify how data

should be transmitted on XMT and RCV. In fact, RS-232-C explicitly

avoids this issue. Fortunately, common convention and other

standards have settled on a pretty universal serial data

transmission convention. When data is not being sent, the data line

sits idle in the MARK state. A data character (sometimes called a

transmission WORD) is signalled by one START BIT, represented by the

SPACE state. It is followed by the data bits (most commonly 8 of

them), each bit being represented by SPACE for 0 and MARK for 1. The

word is terminated by 1 (sometimes 2) STOP BIT, represented by the

MARK state. The next word can immediately follow with its start bit,

but if it does not, the line stays idle in the MARK state

(effectively, the stop bit lasts indefinitely). The data bits are

ordered least significant first, that is, the bit numbered 0 is sent

first, 1 next, and so on.

31

The receiver does not know when a character will be coming, so it

has to constantly monitor the stopped MARK state looking for the

transition to a start bir The receiver can then receive the rest of

the bits in the word because it knows when each will arrive - each

bit has the same duration as established by the BAUD RATE (bits-per-

second rate) of the communication. Of course, both the transmitter

and receiver must use the same Baud rate.

There are only a small number of common Baud rates, and the ATARI

850 Interface Module supports all of the most common ones. The most

common transmission word size is 8 bits, when sending ASCII, which

is a 7-bit code, the 8th bit usually represents the parity, is just

set to 1 or 232 or is used as a marker bit of some sorr ASCII is

very occasionally sent in 7-bit words. The ATARI 850 Interface

module supports 7-bit words for these cases, and can also be used

for communicatian with 7-bit or 6-bit codes such as BCD (with or

without parity). Five-bit words are also allowed so you can

communicate with old Baudot-code teletypes for radio-teletype and

similar uses.

32

APPENDIX 2

RS-232-C PORT ERROR CONDITIONS, CAUSES AND CORRECTIONS

This section contains descriptions of the errors you might encounter

while using the ATARI 850 Interface Module. Many of these errors

also occur with other ATARI peripherals, they are listed here so you

can see what they mean when using the Interface Module.

There are a number of NEW errors which you can get from the

Interface Module which no other peripheral produce. These new error

codes are bolded.

ERROR 1 - Success. This is the status which successful completion

of an I/O operation produces. BASIC does not report this

to you except by continuing in normal fashion.

ERROR 128 - Break aborr This means you pressed the BREAK key while

I/O was proceeding.

ERROR 129 - IOCB already OPEN. Your choice of channel number (#n)

was that of a channel (IOCB) which was already OPEN. This

can happen if you restart a program in a manner other

than RUN (RUN closes files). Be careful not to put your

OPEN statement inside a programmed loop. The second time

OPEN is encountered it will produce ERROR 129.

ERROR 130 - Nonexistent device. You specified something other than

R:, R1:, R2:, R3: or R4:. Perhaps you were trying to

access a file on disk whose name starts with "R" and

forgot the D: . THIS ERROR WILL OCCUR IF YOU ATTEMPT TO

USE AN RS-232-C PORT AND THE RS232 HANDLER HAS NOT BEEN

"BOOTED" WHEN THE SYSTEM WAS TURNED ON. In that case, you

should save your program and start a new session.

allowing the RS-232-C handler to boor See the section on

automatic bootstrap.

ERROR 131 - Write only. You tried to read (GET, INPUT) from a port

you OPENed as write only.

ERROR 132 - Invalid command. You specified something incorrectly in

an XIO command to the Interface Module.

ERROR 133 - Channel not OPEN. You neglected to OPEN the channel

(IOCB) to the I/O device you are trying to access.

ERROR 135 - Read only. You tried to write (PUT, PRINT) to a port you

opened for read access only.

ERROR 138 - Device timeour The Interface Module did not respond to a

command. Check the cables. Make sure the Interface Module

is powered on.

33

ERROR 139 - NAK. The Interface Module refused to perform some

command. You may issue a STATUS request to find out what

was wrong. Mort common causes are: attempts to perform 5-

, 6-, or 7-bit input at too high a Baud rate, automatic

readiness checking was enabled and the connected device

was not ready.

ERROR 150 - Port already OPEN. You attempted to OPEN an RS-232-C

port but is was already OPEN through another channel

(IOCB). You can access an RS-232-C port through only

one channel at a time.

ERROR 151 - Concurrent mnde I/O not enabled. You attempted to start

concurrent mode I/O (XIO 40) but the port was not opened

with an odd number specified for Aux1 (Aux1 bit 0 not

Set).

ERROR 152 - Illegal User-supplied Buffer. In the START CONCURRENT

MODE I/O command with the user-supplied buffer, the

buffer address and/or the buffer length were inconsistenr

ERROR 153 - Active Concurrent Mode I/O Error. You attempted to

 perform I/O to an RS-232-C port while Concurrent Mode

I/O was active to some other RS-232-C port. Only input,

output, CLOSE and STATUS commands to the active

concurrent mode port are allowed while concurrent mode

I/O is active, This error message is not always produced

- attempts to do disallowed I/O while concurrent mode

I/O is active may result in the computer "crashing".

ERROR 154 - Concurrent mode IIO not active. Concurrent mode I/O

 must be activated in order to perform input (GET,

INPUT).

34

APPENDIX 3

PRINTER PORT ERROR CONDITIONS, CAUSES AND CORRECTIONS

This section describes error conditions which could occur when using

the printer port. There are no new error codes associated with the

printer port however the meaning of some of the different between

the Interface Module and other ATARI printers.

If an error occurs which is not listed here, consult the BASIC

reference manual. Errors are listed here only if they have some new

meaning when reported by the Interface Module.

ERROR 108 - Timeour The Interface Module did not respond to a

request from the Computer. Check the cables. Make sure

the Interface Module and attached printer are powered on.

The Interface Module will NOT respond to printer control

commands from the computer if the FAULT wire to the

printer is low (caused by loose cable or printer off).

ERROR 139 - NAK. The interface Madule refused an illegal printer

command. Make sure that Aux1 and Aux2 are specified as

zero (0) in your OPEN command for the printer. This error

also occurs when the printer appears active (FAULT line

is high) but the printer fails to respond to characters

sent to it within four seconds. Check the switches on the

printer (online?). If the printer is not performing

within 4 seconds, change your PRINT statements to break

down transmissions into smaller chunks.

NOTE: Attempt5 to operate more than one printer at a time will

result in unpredictable operation. While one printer may "win" most

of the time, errors are always possible, and exactly which error

occurs is a matter of chance. If you have more than one ATARI

printer attached to your computer turn on only one of them at a

time.

35

APPENDIX 4

MEANING OF (ERROR) BITS IN LOCATION 746

TABLE I - Decimal Representation of the Error Bits in Location 746

Decimal Equivalent

Error

128

Received data framing error

64

Received data byte overrun error

32

Received data parity error

16

Received data buffer overflow error

8

Illegal option combination attempted

4

External device not fully ready flag

2

Error on block data transfer out

1

Error on command to Interface Module

Below are the descriptions of these error status bits in location

746 after STATUS command:

RECEIVED DATA FRAMING ERROR (bit 7, decimal value 128) This error

bit indicates a framing error was encountered in the data coming

from the external RS-232-C compatible device: the 10th bit of some

character was not a STOP bit (9th, 8th or 7th in the cases of 7-, 6-

or 5-bit received words). This error can be caused either by garbled

data (e.g. noise on the phone lines) or by improper configuration to

receive the data (e.g. wrong Baud rate). This condition is monitored

in one of two places: in the 400/800 computer or in the Interface

Module. The computer watches for this error in the case of 8-bit

data. The Interface Module catches this error if you are receiving

7-, 6-, or 5-bit data. In both cases, the error status is set at the

time the erroneous character is received (not the time you read it

out of the holding buffer).

36

In the 8-bit data case, where the computer monitors the error, you

may find out about the error any time after it occurs by issuing

STATUS while the concurrent mode input is active. The error bit will

be cleared when you issue the STATUS command. This error bit will be

cleared also when you CLOSE the concurrent mode channel. In the 7-,

6-, and 5-bit cases, the error is monitored by the Interface Module

and cannot be interrogated while the concurrent mode input operation

is active. In this case, you must CLOSE and re-OPEN the concurrent

mode channel and then issue STATUS to determine if the error

occurred. The error bit in the Interface Module is cleared by STATUS

when concurrent mode I/O is not active, it is also cleared by most

of the configuring and control XIO's (but not all), and (it may be

cleared) by CLOSE when concurrent mode I/O is not active.

In general, the error bits read from location 746 after a STATUS

request apply only to the most recent I/O operation to the RS-232-C

port that is, they are cleared as the I/O operation is started and

then set if the error oceurred. Yau can see that the previous error

is an exception to this rule. Other exceptions wll be noted.

RECEIVED DATA BYTE OVERRUN ERROR (bit 6, decimal value 64) This

error bit is maintained by the computer and indicates that the

computer got too busy to read all the data as it was arriving (due

to overly heavy interrupt loading, or perhaps interrupts being

masked off totally). This error is flagged when the first character

of data following the error is read from the port and placed in the

holding buffer. The error should not occur at all under normal

conditions.

RECEIVED DATA PARITY ERROR (bit 5, decimal value 32) This error bit

is maintained by the computer and indicates that a received

character had the wrong parity. The bit will not be set if no parity

checking has been enabled. This error occurs during the translation

from the external (received) form of the character to the internal

(INPUT, GET) form. The error flag bit is cleared by the STATUS

command.

RECEIVED DATA BUFFER OVERFLOW ERROR (bit 4, decimal value 16) This

error flag indicates that more data has arrived than can be held in

the input buffer - data has not been read from the buffer (INPUT,

GET) soon enough. This error is maintained by the computer and it

occurs when the overflowing characteh arrives from the RS-232-C

compatible device. The new character replaces the oldest one in the

buffer. This error bit is cleared by the STATUS command.

ILLEGAL OPTION COMBINATION ATTEMPTED (bit 3, decimal value 8) This

error flag is kept in the Interface Module and may be read by STATUS

only if concurrent mode I/O is not active. It is set by an attempt

to start concurrent mode input with short words (7-, 6-, or 5-bit)

with the port open for both input and output (short words are

allowed one direction at a time only) or too high a Baud rate (short

words are allowed for input at a maximum rate of 300 Baud).

 37

This error may be checked immediately after the Interface Module

produces a NAK for the refused command. The bit is cleared by the

STATUS requesr Error bit (command erron decimal value 1> will always

be set when this bit is ser

EXTERNAL DEVICE NOT FULLY READY (bit 2, decimal value 4) This bit is

kept in the Interface Module and may be read by STATUS only when

concurrent mode I/O is not active. It is set whenever a START

CONCURRENT MODE I/O or block output command is refused by the

Interface Module because one or more of the external status lines

being monitored is not ON. Any of the external status lines not

being monitored (as set by the SET BAUD RATE command) is ignored,

and if none is being monitored this bit will not be set and the I/O

operatian will proceed normally. Read this flag bit with a STATUS

request immediately after the Interface Module refuses the operation

with NAK. This flag is cleared by the STATUS command.

DATA BLOCK ERROR (bit 1, decimal value 2) This error bit is

maintained in the Interface Module and may be read by STATUS

immediately after a command is refused by NAK. In a block output,

the data block was unsuccessfully received from the computer by the

Interface Module. This error should not occur in normal operation,

it indicates problems in communication between the computer and

Interface Module.

COMMAND ERROR TO INTERFACE MDULE (bit 0, decimal value 1) This error

bit is maintained in the Interface Module and may be read by STATUS

immediately after a command is refused by a NAK from the Interface

Module. This bit indicates that the Interface Module did not

recognize a command sent to it from the computer or that the

Interface Module is not configured properly to perform the command

(see ILLEGAL OPTION COMBINATION ERROR).

During active concurrent mode I/O, the STATUS command will return

the number of characters in the input buffer in locations 747 and

748, and the number of characters in the output buffer in location

749. To find the number of characters in the input buffer in BASIC:

LET BUFFERUSE = PEEK(747) + 256*PEEK(748)

If you want to find out only whether or not any characters are in

the input buffer you do not need to multiply by 256:

IF PEEK(747)+PEEK(748)=0 THEN PRINT "input buffer empty..."

or:

IF PEEK(747)+PEEK(748)<>0 THEN PRINT "input buffer not empty..."

If you are using the built-in buffer or if your supplied buffer has

fewer than 256 bytes, then location 748 will always be zero and you

need to look only at location 747.

38

The output buffer holds only 32 characters, location 749 will never

exceed 32.

When concurrent mode I/O is not active, location 747 will contain

information about the monitored readiness lines (DSN, CTS and CRX)

and the data receive line (RCV) of the specified port after a STATUS

requesr Locations 748 and 749 will not contain anything useful after

a STATUS request when there is no active concurrent I/O.

Location 747 will contain the sum of four numbers shown in table II.

The current and past status of DSN, CTS, and CRX as well as the

curnent status of RCV are included. The past status of DSN, CTS and

CRX applies back to the time the Interface Module was booted, or to

the most recent STATUS command to the specified port which was made

while concurrent mode I/O was not active (i.e., the last time that

DSN CTS and CRX were supplied to a STATUS request). No other

operations affect the past status of these Iines.

Ports 2 and 3 will always show CTS and CRX as being ON. Port 4 will

show CTS, CRX, and DSR as being ON.

A quick way to check whether or not a port is ready is this:

STATUS #n, XXX

IF PEEK(747)<128 THEN PRINT "not ready..."

or to check if it has stayed ready since the last check:

IF PEEK(747)>=192 THEN PRINT"always ready..."

In other words, the DSR status bits are the most significant bits in

the sense byte, and you can check them this way without having to

worry about the states of the other bits in the byte.

39

TABLE II - SENSE VALUES ADDED INTO LOCATION 747

DATA SET READY (DSR)

192 Ready now (ON), on since previous STATUS

128 Ready now (ON), not always on since last STATUS

64 Not ready now (OFF), not always since last STATUS

0 Not ready now (OFF), always off since last STATUS

CLEAR TO SEND (CTS)

48 Clear now (ON), on since previous STATUS

32 Clear now (ON), not always on since last STATUS

16 Not clear now (OFF), not always on since last STATUS

0 Not clear now (OFF), always off since last STATUS

CARRIER DETECT (CRX)

12 Carrier now (ON), on since previous STATUS

8 Carrier now (ON), not always on since last STATUS

4 Not carrier now (OFF), not always off since last STATUS

0 Carrier now (ON), always off since last STATUS

DATA RECEIVE (RCV)*

1 MARK (1) now

0 SPACE (0) now

* No information is supplied about the past status of RCV.

40

APPENDIX 5

SETTING THE BAUD, WORD SIZE, STOP BITS AND READY MONITORING

CONFIGURE BAUD RATE command allows you to set the Baud rate, "word"

size, number of stop bits to transmit, and enable or disable

checking of DSN, CTS and CRX. The command may be issued through an

open channel to the RS-232-C port, or may be issued through a

channel which isn't being used. If uou have opened a channel to the

port you are corifiguring, you must use that channel. You cannot

configure any port if a concurrent Mode I/O operation is active.

The CONFIGURE BAUD RATE command looks like this in BASIC:

XIO 36, #channel, Aux1, Aux2, "Rn: "

The 36 makes this a CNFIGURE BAUD RATE command.

Channel is the number of the channel that BASIC should use to

execute the command. The channel should either be open to the port

you are configuring. or should not be open at all. No concurrent

mode I/O should be active when you issue this command.

Aux1 is a number or expression that specifies the Baud rate, "word"

size, and number of stop bits to send with each "word." For each of

these, pick a number from tables I, II, and III, and then add the

numbers together to form Aux1. You may add them together yourself or

you can let BASIC add them for you. For example:

XIO 36, #1, 128+0+10, 0, "R: "

 and

XIO 36, 138, 0, "R: "

both specify the same thing.

Aux2 is a number or expression that specifies whether or not the

Interface Module should check Data Set Ready (DSR), Clear to Send

(CTS), and/or Carrier Detect (CRX) when a block mode output or START

CONCURRENT MODE I/O operation is performed. If you ask to have the

Interface Module check one or more of these, then the Interface

Module will return error status if the line(s) checked is not ON.

You may TRAP the error and program BASIC to take the action you

desire. See table IV for values of Aux2.

The last XIO parameter: "Rn: " specifies which serial port of the

Interface Module you are configuring. For n put 1, 2, 3, or 4, just

as you would in the OPEN command.

 41

TABLE I: BAUD RATE SPECIFIERS TO ADD TO AUX1

ADD

Baud rate

ADD

Baud rate

0

300 bpsi

8

300 bps

1

45.5 bps*

9

600 bps

2

50 bps*

10

1200 bps

3

56.875 bps*

11

1800 bps

4

75 bps**

12

2400 bps

5

110 bps

13

4800 bps

6

134.5 bps***

14

9600 bps

7

150 bps

15

9600 bps

1) bps = bits per second = baud
*) These Baud rates are useful for communications with Baudot

teletypes, for RTTY (radioteletype) applications. They

 are more commonly referred to as 60, 67, and 75 words per

minute.

**) This Baud rate is sometimes used for ASCII communications,

 and may also be used for 5-bit Baudot RTTY. The latter is

commonly referred to as 100 wpm.

***) This Baud rate is used by IBM systems.

42

TABLE II: WORD SIZE SPECIFIERS TO ADD TO AUX1

ADD

Word Size

0

8 bits

16

7 bits

32

6 bits

48

5 bits

TABLE III: SPECIFIER FOR 2 STOP BITS TO ADD TO AUX1

ADD

Stop bits send

with each

word

0

1

128

2

43

TABLE IV: AUX2 SPECIFICATION TO MONITOR DSR, CTS, CRX

ADD

TO MONITOR

0

None

1

 CRX

2

 CTS

3

 CTS, CRX

4

 DSR

5

 DSR, CRX

6

 DSR, CTS

7

 DSR, CTS, CRX

Note that the default (pre-set) values of Aux1 and Aux2 for all four

ports are zero, corresponding to 300 Baud, 8-bit words, one stop bit

transmitted, and no checking of DSN CTS or CRX.

You should know the following things about this command:

The configured parameters will stay as you set them until you either

reset them or until you reboot the system (turn the power off and

back on). The SYSTEM RESET key will NOT reset any of these

parameters.

You may configure each RS-232-C port independently.

If you specify 8-bit words, there are no restrictions on operationn

of the port. However, the following restrictions apply to 7-, 6-,

and 5-bit words: half-duplex operation only, some limitations on

baud rates. Specifically, ail output baud rates are allowed in Block

Output mode. In Concurrent Mode, either in or out, you are limited

to operation at 300 Baud and below. If you specify 7-, 6-, or 5-bit

words, there is no restriction on the number of stop bits you may

specify.

44

Note that most applications of these word sizes will probably be to

devices that require more than 1 stop bit - you should specify two.

If you specify 7-, 6-, or 5-bit words, each word sent or received

will be converted from or to an 8-bit byte within the computer by

ignoring the most significant bit(s). This will very likely interact

with the translation operation, and in particular there may be no

way you can receive an EOL. If this is the case, you cannot use the

BASIC INPUT statement to read the port and you must retrieve

characters one at a time using GER More details will be found in the

section on translation modes. (APPENDIX 6)

If you specify that you want the Interface Module to check DSN, CTS

and/or CRX, it will check them whenever you try to start concurrent

mode I/O and whenever you try to send a block of data in block

output mode. If any of the lines you asked to be checked is not

ready (OFF), then the concurrent mode I/O will not be started or the

block of data will not be senr The Interface Module will then return

an error to BASIC, and you may TRAP the error and take connective

action. Following the TRAP, you may perform a STATUS request from

the Interface Module ta find out what the problem was.

Note that CTX and CRX are not supported on ports 2, 3, and 4, and

that DSR is not on port 4. The Interface Module behaves as if they

were really there, howeven and acts as if they were always ready

(ON).

You may look at the states of DSN CTS and CRX at any time that

concurrent mode I/O is not active (if you have a channel open to the

port) by issuing a STATUS request for the port. Thus, enabling this

automatic checking of these lines is not the only option available

to you, and you may prefer checking them directly with STATUS.

 45

APPENDIX 6

TRANSLATION AND PARITY HANDLING

The Interface Module handler can be configured to perform certain

types of code conversions (translations) and do parity generating

and checking for you. These two operations interact with each other.

For this reason, they will be described together in this section.

The various options you may select for each are even specified by

executing the same command - CONFIGURE TRANSLATION AND PARITY.

There are three factors you need ta keep in mind when you are

setting up your code translations. Translation, of course, is one of

them, since it results in (possibly) changing one code into another.

Parity generation and checking also may result in changing one code

into another. The third factor you need to keep in mind is the word

size you are transmitting/receiving. Inside the computer all words

are the same as bytes: that is, all words are 8-bits. If you are

sendinglreceiving 7-, 6- or 5-bit words, these shorter words have to

come from 8-bit computer words by chopping out some bits, or

expanded into 8-bit computer words by adding some bits. These

operations obviously are the same as changing one code into another.

Each of these three possible code changes takes place separately

from the others, one at a time. For output, translation comes first,

followed by parity generation, and finally truncation (shortening by

leaving bits off). Of course, at each stage a change may not occur,

depending on what selection of options you have configured and

depending on which character (code) the computer is sending. For

example, if you have configured 8-bit words, the trunction operation

does nothing. For input, the order of code changing is expansion

(from short words to 8-bit words), followed by parity checking, and

finally translation.

At each of the three stages, a code change may occur. If a change

DOES occur then it is the CHANGED code which will be operated on in

the next stage. For example, (in a particular configuration of

translation and parity options) if you output an ATASCII EOL, it

would first be translated to an ASCII CR and then parity would be

generated for the CR. This is because the parity step operates on

the result of the translation step, in this case the CR.

There is one other translation option which is very specific,

namely, the option to have an ASCII LF (line feed) sent after each

transmitted CR (Carriage Return). This code change occurs at the

translation step. Consequently, the generated LF will go through the

parity and truncation (small word) phases just like the CR.

46

TYPES OF CODE TRANSLATION

You have three options to choose from: no translation at all,

"light" translation, or "heavy" translation. Whichever option you

choose will apply both to incoming and outgoing characters. The "no

translation" option is just what it says - no change is made to the

characters, whether being received or senr This statement applies

only to the translation step, of course - you can still get changes

from parity and small words. The no-translate option is useful if

you are going to do your own special processing on the characters

you are sending and receiving. This can be particularly useful in

the small-word situations, since many of the cases where small words

are used do not (or cannot) involve ASCII. You may also want to use

the no-translation option if the RS-232-C compatible device you are

communicating with understands ATASCII.

No matter which translation option you choose, if you use a BASIC

INPUT statement to read data the data must have an ATASCII EOL (End

of Line) character at the end of each line. This requirement applies

AFTER all translation. Thus, if you select the no-translation

option, your incoming data must either contain EOL's or you should

use GET instead of INPUR Remember also, that using short words and

that checking parity also affect data coming in, so you may still

need to use GER

Heavy and light translation are two ways to convert between ASCII

and ATASCII. In either translation mode, the ATASCII EOL (9B in

hexadecimal, 155 in decimal) is converted to and from the ASCII CR

(0D in hex, 13 in decimal). In the case of output, EOL is changed to

CR; if you also selected the Append LF option, EOL is changed to CR

followed by LF, that is, the translation function produces two

characters out for one in. On input, a CR will be translated to EOL.

Both Heavy and Light translation modes assume ASCII in the outside

world and they assume ATASCII in the computer. ASCII is treated as a

7-bit code, that is, the 8th (most significanta bit is always

treated as if it is zero. On input, then, if you select Heavy or

Light translation, the 8th bit of each word is cleared to zero. On

output, the translation step will set this bit to zero.

Light translation performs the fewest changes between ASCII and

ATASCII. The assumption is that you wish to work with ATASCII within

the computer but treat it as if it were really ASCII. Note, for

example, that the ATASCII graphics codes are the same (numerically,

and for the most part the way you type them, too) as the ASCII

control codes (1-26). So for input, the character has its high bit

stripped (set to zero), and that's all-except if the code is found

to be a CR it is changed to an EOL. For output, if the character

being sent is EOL it is changed to CR; then, no matter what the

character is, the high bit is set to zero. Light translation is the

pre-set default mode.

 47

Heavy translation is a more thorough translation mode. Here the

assumption is that if there is no direct correspondence between the

character in ASCII and ATASCII, then the code should not be

translated. So for input, after the high bit is cleared to zero, if

the character is CR it is changed to EOL, otherwise, the character

is checked to see if it is the same in ATASCII as in ASCII. If it is

not, it is translated to the WON'T TRANSLATE character.

Specifically, if the code for the ASCII character is less than 32

decimal (i.e., the character is a control character) or greater than

124 decimal (7C hex) it will be translated to the "won't translate"

character. Thus, heavily translated ASCII corresponds to the

printable characters from blank through vertical bar. The "won't

translate" character is specified by you in the CONFIGURE

TRANSLATION command. If you do not specify it, the pre-set default

value for it is zero (ATASCII graphic heart).

On output, heavy translation converts EOL to CR, and will output any

character whose ASCII meaning is the same as it is in ATASCII. That

is, characters whose values range from 0-31 decimal (ASCII control

values) or whose values are above 124 decimal (7C hex) will not be

senr Note that characters whose high bit is one will be translated

to nothing, that is, characters which would show on the TV screen as

INVERSE VIDEO WILL NOT BE SENT in heavy translation mode. Note also

the difference between input and autput in the heavy translation

mode: untranslatable characters in the input are converted to the

"won't translate" value, where untranslatable output simply is not

sent our

The (optionali sending of LF after CR is produced in the translation

step. If you specify no translatian, the option of adding LF to CR

is not available. If you specify light translation, LF will follow

EOL (which of course becomes CR). Note that sending the 13 decimal

code (CR) by itself EOL will be turned into a CR/LF pair (with the

append LF feature turned on). Each character in the CR/LF pair is

independently sent through the parity and word-shortening steps on

its way out. The pre-set default setting of the append LF feature is

OFF, that is, the default is to NOT append the LF.

PARITY

You may select input and output parity handling separately. Thus,

you may choose to send, for example, even parity while you ignore

the parity of what you are receiving. The parity is always the most

significant bit of each 8-bit byte (bit number 7). Thus, this parity

operation is not applicable if you are working with 7-, 6-, or 5-bit

words.

In the default parity condition, the parity bit of neither input nor

output is altered. Note, however, that the parity bit of out-going

messages may have been changed during the translation step.

For output, you may select even parity, add parity, set parity bit

or no parity.

48

For input, your choices are "don't touch", check even, check odd,

and "don't check". Each of these last three options will clear the

top bit to zero, whether or not a parity check is made. If an input

parity error is found, the character will still be input as if it

were all right; thF parity error flag will be turned on in the

status bytes (see STATUS REQUEST).

SHORT-WORD CONVERSION

The third operation which affects your code translation is the

short-word conversion (if you are using 8-bit words, this is a

"no-effect" operation). Short words sent out are made from 8-bit

computer characters by omitting the most significant bits. That is,

a 7-bit word is bits 0-6 of the character a 6-bit word is bits 0-5,

and a 5-bit word is bits 0-4. Thus the parity, if generated, is

lost. ASCII is a 7-bit code; you can send ASCII in 7-bit form

without parity (this is not common practice, though-usually 8 bits

are sent even if the 8th bit is not used for parity). With 6-bit and

5-bit codes, you will not be using ASCII, so you will have to

concern yourself with the codes you want to be sending. With these

word sizes, you should turn translation off so the translation

performed by the Interface Module handler will not affect the codes

you are working with.

On input, small words are converted to 8-bit computer characters by

adding high-order bits. These added bits are always set to 1. Thus,

if you are receiving 7-bit ASCII, the parity and translation steps

will be getting ASCII with the 8th bit set high. If you are

receiving 6- or 5-bit codes, there is no way you can receive the 13

decimal (OD hex) code (ASCII CR) - after all. you cannot receive

ASCII in 6 or 5 bits anyway. This means that in BASIC you will have

to use the GET statemenr not INPUT. Of course, you will be doing

your own code conversion, so you should turn off the conversions of

the Interface Module handler.

The CONFIGURE TRANSLATION MODE command is specified in BASIC this

way:

XIO 38, #channel, Auxi, Aux2, "Rn: "

38 specifies the CONFIGURE TRANSLATION MODE command.

#Channel specifies the channel number (IOCB number from 1 to 7) you

wish to use to configure the translation mode. You may use an unopen

channel if you have no channel open to the port you are configuring,

otherwise you must use the channel you have opened to that port. You

cannot issue the CONFIGURE TRANSLATION MODE command if any

concurrent mode I/O is active.

Aux1 specifies the translation mode, the input parity mode, the

output parity mode, and the Append LF option. You specify these

options by adding numbers taken from tables I, II, III and IV.

 49

You may add the numbers yourself and put the sum in your program for

Aux1, or you may let BASIC add them for you (e.g., you can say

either 2+8+32 or 42 to mean even parity in, even parity out and no

translation). Do not add in more than one value from each table.

Aux2 is the numeric representation of the "won't translate"

character for heavy translation. Remember that the BASIC function

ASC will give you the numeric representation of a character. For

example, 41 and ASC("A") mean the same number. The number you

specify should be from 0 through 255.

"Rn: " specifies the port you are configuring. For n, you put 1, 2,

3, or 4. You may omit n, which will mean you are configuring port 1.

The default configuration is Aux1=0 and Aux2=4. If you execute the

CONFIGURE TRANSLATION MODE command for one of the RS-232-C ports,

that configuration will remain in effect until you do another

CONFIGURE TRANSLATION MODE for that port. SYSTEM RESET will not

change the translation mode for any port. Of course, you can

configure each port a different way.

TABLE I: TRANSLATION MODE OPTIONS ADDED TO AUX1

ADD

To Get

0

Light ATASCII/ASCII translation

16

Heavy ATASCII/ASCII translation

32

No translation

TABLE II: INPUT PARITY MODE OPTIONS ADDED TO AUX1

ADD

To Get

0

Ignore and do not change parity bit

4

Check for odd parity; clear parity bit

8

Check for even parity; clear parity bit

12

Do not check parity but clear parity bit

50

TABLE III: OUTPUT PARITY MODE OPTIONS ADDED TO AUX1

ADD

To Get

0

Do not change parity bit

1

Set output parity odd

2

Set output parity even

3

Set parity bit to 1

TABLE IV: APPEND LINE FEED OPTIONS ADDED TO AUX1

ADD

To Get

0

Do not append LF

64

Append LF after CR (translated from EOL)

APPENDIX 7

CONTROLLING THE OUTGOING LINES - DTR, RTS and XMT

There are up to three outgoing RS-232-C signals on each of the RS232

ports of the Interface Module: Data Terminal Ready (DTR), Request To

Send (RTS), and Data Transmit (XMT). Each of these lines can be

turned ON or OFF with the CONTROL command.

Port 1 supports all three outputs. Ports 2 and 3 have DTR and XMT,

port 4 has only XMT. You may use this command the same way with any

port - it is not an error to try to control a line that does not

exist. Your attempt will simply have no effect.

You may control any or all of these lines on a single RS-232-C port

with the CONTROL command (controlling lines on other ports requires

one CONTROL command for each port). The CONTROL command may be

issued to a port which is not OPEN through an I/O channel by

specifying any unopen channel number in the CONTROL command. If the

port has been opened through a channel, you must use that channel in

the CONTROL command. You may not issue a CONTROL command if any

concurrent mode I/O is active.

Controlling XMT line has very limited use and few users will be

concerned with it. In its normal state XMT is passive. If you change

XMT you are likely to interfere with the normal transmission of

data. In the serial communication world the only practical use of

control of the XMT line is to send a BREAK signal. The BREAK is

simply a period of holding the XMT line out of its normal resting

state. Specifically, the normal resting state is called MARK, which

corresponds to the binary "1" state. A BREAK is a period of the

state called SPACE, which corresponds to binary "0". (Actually,

since MARK and SPACE are the only legal states of any RS-232-C

signal, all data consists of alternating MARKS and SPACES. What

distinguishes BREAK from other uses of SPACE is that a BREAK is a

SPACE which is a lot longer in duration than the time that a

transmitted word would be. This is so because any transmitted word

ALWAYS has one or more MARK bits in it - in particular each word

ends with one or more stop bits represented by MARK). Thus to send a

BREAK, first issue a CONTROL command to set the XMT line to SAPCE

tD), then a little while later issue a control to set it back to

MARK (1).

The uses of the other lines will depend on your application. For

some guidelines, see APPENDIX 1.

The pre-set default state of the DTR and RTS lines is OFF. The pre-

set default state of the XMT line is MARK. Once you change any of

them with the CONTROL command, the new setting will remain until you

either turn the computer off or issue another CONTROL command to

change things. The SYSTEM RESET key has no effect on these lines.

52

The form of the CONTROL command in BASIC is:

 XIO 34, #channel, Aux1, Aux2, "Rn: "

34 specifies the CONTROL command.

#channel specifies the IOCB or channel number (1-7) you wish to use

for the command. If no channel is open to the RS-232-C port. specify

an unused channel. If the port is open through a channel, use that

channel.

Aux1 is the sum of three numbers chosen from tables I, II and III to

control DTR, RTS and XMT. Choose only one number from each table.

You may add the numbers together yourself and put the resulting sum

in your program for Aux1, or you may put an expression for the sum

and let BASIC do the arithmetic for you.

Aux2 is not used by this command: the best value to specify is zero.

"Rn:" specifies the RS-232-C port you are acting on. For n you put

1, 2, 3 or 4. If you omit n, the Interface Module handler will

assume you mean port 1.

TABLE I: CONTROL VALUES FOR DTR ADDED TO AUX1

ADD

To Get

0

No change from current DTR setting

128

Turn DTR OFF

192

Turn DTR ON

TABLE II: CONTROL VALUES FOR RTS ADDED TO AUX1

ADD

To Get

0

No change from current RTS setting

32

Turn RTS OFF

48

Turn RTS ON

 53

TADLE III--CONTROL VALUES FOR XMT ADDED TO AUX1

ADD

To Get

0

No change from current XMT setting

2

Set XMT to SPACE (0)

3

Set XMT to MARK (1)

54

APPENDIX 8

STARTING CONCURRENT I/O MODE

Use the command START CONCURRENT I/O (XIO 40) to start concurrent

I/O mode. This mode may be used for output and must be used for

input or full duplex. The port must be open before you can start

concurrent I/O. Once concurrent I/O is in effect no other I/O

operations which use the computer I/O connector can be performed.

I/O operation to another serial port, for example, can not be

performed. I/O to the keyboard, the screen, the Editor and the

controller jacks can still be performed.

The concurrent mode I/O operation may be terminated by SYSTEM RESET,

BREAK, or by closing the port.

Operations which are allowed while concurrent mode I/O is active are

input and output operations to the active port (GET, INPUT, PUT,

PRINT), and STATUS commands to that port.

There are two different forms of the START CONCURRENT MODE I/O

command. The main difference between them is that one specifies the

use of a small input buffer built into the Interface Module handler

(in the computer), and the other allows you to give your own buffer

to the handler so it can be any size you wish. (NOTE: in Assembly

Language these two options are realy just different forms of the

same command).

The form of the START CONCURRENT MODE I/O command which allows you

to specify your own I/O buffer has two disadvantages: the command is

complicated to specify in this form, and the BASIC array you use as

the buffer may be moved by the BASIC interpreter. Once created,

BASIC arrays are NOT moved while a program is being run, but arrays

are moved whenever you add or delete a BASIC statement, even in

immediate mode. The handler for the Interface Module is told of the

location of the buffer only when you start the comcurrent I/O; thus,

if you allow BASIC to move the array, data will be inserted in

unpredictable locations, possibly destroying even the BASIC program

itself. Ongoing concurrent input could wind up in other arrays or

variables, or even in your BASIC program! SO REMEMBER: IF A PROGRAM

IS USING CONCURRENT MODE INPUT ALWAYS MAKE SURE THE CONCURRENT MODE

OPERATION IS STOPPED WHEN YOUR PROGRAM STOPS. This will be done for

you if you stop by using BREAK key, SYSTEM RESET key, or end your

program with END or letting the program stop by "running off the

end."

STOP does not terminate the concurrent input, and neither will it be

stopped if an ERROR happens. IN THESE CASES, THE WAY TO STOP THE

CONCURRENT I/O IS TO PRESS THE BREAK KEY.

None of these problems occur if you use the buffer which is built

into the Interface Module handler since that buffer does not move!

 55

On the other hand, that buffer is quite small (32 bytes) and this

may not be adequate for all programs.

With a small input buffer you need to GET or INPUT the data from the

buffer before the buffer fills up with data that you have not yet

read. Of course, if in the long-range average you read the data out

of the buffer more slowly than it is arriving, you will eventually

lose data anyway. If this is the case, you will either have to put

up with losing it (which is not all that bad in some cases), or you

will have to figure out a way to slow down the device that is

sending the data to you (such as setting a lower Baud rate). Even if

your program processes the data fast enough in the long run, a small

buffer puts demands on your program to get data quickly and often.

Here are some things to consider.

The BASIC interpreter is quite slow relative to incoming data, if

you want to do some processing on each and every character that

comes in. In that case, 300 Baud would be fast. On the other hand,

the system is more than fast enough to read in a line of data

(terminated by CR) at 9600 Baud (960 cps) - as long as there is

enough time between lines for your program to do its processing. It

pays to read a whole line of input at a time (use INPUT wherever

possible instead of GET), and it's really helpful if the inputting

device will pause for you after each line. Even if the inputting

device will not pause, reading a line at a time may buy you the

processing time you need. The best thing to do is try it.

NOTE: In order to perform line-oriented input using the BASIC INPUT

statement, the input must either have an ATASCII EOL at the

end of each input line, or must have an ASCII CR terminate

each line. In the latter case, you must configure the

translation mode of the Interface Module port to convert the

CR into EOL. This is discussed more fully in the section on

configuring translation mode.

A large input buffer will be needed if you can read the data from

the buffer only in large, occasional bursts. For example, if you do

not know how long it will take to process a line of input because

some lines require a lot of work, you will want to allow lines to

"back up" in the input buffer. This will work fine as long as you do

not get too many of these "slow" lines at once. You will probably

have to determine the needed size of your input buffer by trial.

The number of characters that can come in every second depends on

the Baud rate - the higher the Baud rate the faster characters can

arrive. Thirty characters may arrive each second at 300 Baud, 480

may arrive in the same time at 4800 Baud. Of course, if the sending

device does not run at the maximum possible speed - if there are

"gaps" between characters anywhere - then the speed of characters

will not be ???. Thus the Baud rate can control the MAXIMUM data

transfer rate, but the actual or EFFECTIVE data transfer rate may be

smaller.

56

What things boil down to is that your program in BASIC must INPUT

data from the input buffer faster than the Interface Module puts

them there from your RS-232-C compatible device; that is, your BASIC

program must read the data faster than your device's effective data

transmission rate (on average). You can control that rate by setting

the Baud rate, and possibly there are other ways to control the

transfer rate (that depends on the device itself). Be prepared to

experiment to find the best mode of operation.

In BASIC, the START CONCURRENT MODE I/O operation which uses the

built-in input buffer looks like this:

 XIO 40, #channel, 0, 0, "Rn: "

Specify the appropriate open channel, and specify 1, 2, 3 or 4 for n

in "Rn: ". If you leave n out (i. e. , "R: "), then port 1 is

assumed. You MUST specify zero for both Aux1 and Aux2, since this is

the way you tell the RS-232-C handler to use its own input buffer.

If you opened the port for output only, then only concurrent output

is enabled. If the port is open for input only, then only concurrent

input is started. If the port was opened for both, then concurrent

mode input and output are started (full duplex). See the section

about the input and output commands for details on how these various

modes operate.

In BASIC the START CONCURRENT MODE I/O operation in which you supply

the input buffer for the handler is specified by a series of POKEs

followed by calling the Central I/O (CIO) through a USR function.

The POKEs specify the type of operation, and specify the buffer

address and length. You POKE these values into the I/O Control Block

(IOCB) corresponding to the channel you have opened for the RS-232-C

port.

Here is an example program:

10 DIM BUF$(500), RSTART$(7)

20 LET RSTART$ = "hhh*LVd"

25 REM NOTE: a underlined character in line above means inverse

video.
30 LET FILE = 2

40 OPEN #FILE, 13, 0, "R4: "

50 LET IOCB = 16*FILE

60 LET BUF = ADR(BUF$)

65 LET BUFLEN = 500
70 LET RSTART = ADR(RSTART$)

80 POKE 832+IOCB+2, 40

90 POKE 832+IOCB+4, BUF-(INT(BUF/256)*256)
100 POKE 832+IOCB+5, INT(BUF/256)

110 POKE 832+IOCB+8, BUFLEN-(INT(BUFLEN/256)*256)

120 POKE 832+IOCB+9, INT(BUFLEN/256)

125 POKE 832+IOCB+10, 13

130 DUMMY = USR(RSTART,IOCB)

140 STARTSTATUS = PEEK(832+IOCB+3)

In this program, a full duplex file is opened through channel 2 to

RS-232-C port number 4 (the 13 in line 40 specifies full duplex).

Lines 50 through 70 set up some values which are used by the START

CONCURRENT MODE I/O operation. The buffer is setup in lines 80

through 130. Line 140 gets the status value returned by the I/O

call. Each POKE statement puts some needed value into the I/O

Control Block (IOCB). The address to poke is specified as the sum of

the following: the first address of the IOCB's (832), a value

specifying which IOCB, and an "offset" into the IOCB for the

particular value you are POKEing. The value specifying the IOCB is

16 times the channel number through which you have opened the RS-

232-C port (in this case we set the variable IOCB to 32 in line 50,

since the channel is 2).

The values poked into the IOCB are: 40 into offset 2, the buffer

location (address) into locations 4 and 5: the buffer length into

offsets 8 and 9, and 13 into offset 10. Pay special attention to the

fact that the buffer address and the buffer length are both 2-byte

values, requiring two POKEs to put them into the IOCB. Those

complex-looking expressions in lines 90 through 120 are simply

splitting the address and length into their low-part and high-part

so each part can be POKEd individually.

Line 130 calls the I/O system through a USR function. This USR

function has two arguments: the address of the function, and the

IOCB specifier (the same as was used in specifying the POKE

locations). The address of this USR function was found in line 70,

so you see that the function is the character array called RSTART$.

The function itself is the odd-looking sequence of characters in

line 20. Be sure to type this character sequence carefully when

before gou call this USR function - any mistakes and your program

will probably produce an unrecoverable failure.

Assembler note: This USR function is the following in Assembly

Language: PLA, PLA, PLA, TAX, JMP ,E456. The first four instructions

get the IOCB number into the X register, and the return address is

on the stack, so the I/O system is "called" by jumping to it!).

Line 140 gets the I/O status after the USR I/O call. You do not need

to get the status if you do not want to. To get status PEEK at

offset 3 in the IOCB. The status will be 1 if all went well.

Otherwise, the status is the same as the error number that BASIC

prints after an I/O call fails. (Note that the variable DUMMY in the

program above does not get any meaningful value).

Once this START CONCURRENT MODE I/O operation has been performed,

the concurrent I/O is active. The operation may be either in-only,

or it may be full-duplex (as specified in the OPEN). If you are

running full-duplex, the output buffer is built into the Interface

Module handler. The input and output buffers are accessed through

normal input and output statements in BASIC; see the section on

input and output statements.

58

Once again, take note: BASIC MAY MOVE ARRAYS AROUND IF YOUR PROGRAM

STOPS. IF THE CONCURRENT MODE INPUT CONTINUES AFTER YOUR PROGRAM

STOPS, THIS MAY RESULT IN OVERWRITING SOMETHING OUTSIDE YOUR BUFFER

ARRAY. IF YOU ARE NOT SURE WHETHER OR NOT THE CONCURRENT I/O HAS

STOPPED, PRESS THE BREAK KEY TO STOP IT.

NOTE: there is a 256 byte area at address 1536 (decimal) which you

may use as an input buffer or anything else. Be sure that

area is only being used for the one thing you wish. No ATARI

software uses this area except just after you turn the

machine on, but you should be careful of non-ATARI software

you use with BASIC. 1536 splits nicely into low- and high-

parts (so does 256), so you could replace lines 90 through

120 of the above program:

90 POKE 832+IOCB+4, 0

100 P0KE 832+IOCB+5, 6

110 POKE 832+IOCB+8, 0

120 POKE 832+IOCB+9, 1

If you use this area, you do not need to worry about it when your

program stops since BASIC will not move it.

 59

APPENDIX 9

USER PROGRAMS

1.PROGRAMS TO TRANSFER BASIC SOURCE PROGRAMS FROM COMPUTER TO

COMPUTER

Here is a pair of programs which you can use to transfer information

from one ATARI 800 computer to another over the telephone. These two

programs demonstrate an example of a technique called "handshaking".

Handshaking is a rather over used term in the computer world, what

we mean here is that the receiving program will respond to the

sender with an "I've got it!" message of some sort when it has

successfully received each line of information from the sender.

The trick here is that the sending program must not miss the "I've

got it!" message; likewise, the receiving program must not only have

got the line when it says "I've got it!", but the receiver must be

ready to receive the next line immediately because, theoretically,

the sender might send the next line immediately. These programs show

how these things are done.

Both programs operate on one line (up to 255 characters) at a time.

Each program starts by DIMensioning its line-array, and each asks

its user for the filename to be sent/received. Each program then

opens its modem port (R1:) and disk file (assuming the send/receive

files are disk files).

The SEND program is started first. In line 540, the SEND program

gets a line from the disk file. The program then prints the line on

the TV screen (so you can watch the data being sent). Then (lines

570--590) the line is sent over the phone. Note that port R1: is

opened full duplex: SEND assumes when it receives the line,that

RECEIVE might reply IMMEDIATELY. In line 600, SEND waits for the

reply (In this case, a line which is empty except for an EOL is used

for the reply).

The RECEIVE routine, meanwhile, has set itself up to get a line from

the modem (lines 280-290, 530). When line 530 completes (the line of

data has been received), RECEIVE CLOSEs the modem port (R1:) in

order to save the data on the disk (lines 540, 580) and echoes the

data on the TV (line 590). Then RECEIVE OPENs the modem again and

sends the reply (lines 610-630). Note that port R1: is opened full-

duplex: RECEIVE assumes that it might start getting the next line

IMMEDIATELY after it has sent its reply. Note also that it is not

necessary for RECEIVE to INPUT the data immediately, but it is

necessary that RECEIVE have started the concurrent-mode data receive

(line 620).

60

When SEND gets the reply, it knows it can safely CLOSE the modem

port (R1:) to get another line of data from its disk (lines 600-

610). It then goes back to get another line of data (lines 530-540)

and the whole cycle repeats. Note how the SEND program checks for

the end of the disk file and how it sends a specially encoded line

(EOF EOF EOF) to the RECEIVE program to signal this. Note that both

programs explicitly CLOSE their files.

To use these programs, assume you and your friend are talking on the

phone and you've prepared your computers (you have loaded your SEND

progran, and your friend has the RECEIVE program). You each RUN your

programs, and each program gets a filename from each of you-type the

name but DON'T YET type RETURN. Now one of you sets his modem in

ANSWER mode and the other sets his ORIGINATE. Looking at your

watches, you decide that your friend will type his RETURN as soon as

the READY light comes up on his modem and you will type your RETURN

ten seconds later. In other words, the RECEIVE program must be ready

to receive before the SEND program sends the first line! Now you

each put your phone handsets in the modem cradles and you proceed to

send a program to your friend.

Since these programs work on LINES of data, you cannot send

tokenized BASIC. You should send BASIC source, that is, send a file

you saved on the disk with the LIST (not SAVE) command. Your friend

should ENTER the file he receives (not LOAD). You may modify these

programs to send and receive the information one character at a time

(using GET and PUT instead of PRINT and INPUT), doing the handshake

every 40 characters or so. You'll have to pay particular attention

to the question of sending the end-of-file information if you try

this modification; however, such a modification should allow you to

send any kind of data, not just lines of text.

Note that the RECEIVE program will probably need modification if you

intend to put the received information on cassette. This is because

the cassette handler requires that the first 128-byte record be

written within about 30 seconds after you OPEN the cassette for

output. A little experimentation should get you going.

 61

SEND PROGRAM

110 DIM OUTLINE$(255)
200 REM

201 REM ==========

202 REM

210 LET TRANSLATE=32:REM [Full ATASCI]
220 XIO 38,#2,TRANSLATE,0,"R1:"

230 REM

240 PRINT "Send file's full name";

250 INPUT OUTLINE$

2b0 OPEN #1,4,0,OUTLINE$
500 REM

501 REM ==========

502 REM

510 FOR ETERNITY=1 TO 2 STEP 0

520 REM

530 TRAP 900:REM [Trap end file #1]

540 INPUT #1,OUTLINE$:REM [Get line]
550 PRINT OUTLINE$: REM [Echo onscreen]

560 REM
570 OPEN #2, 13, 0, "R1:"

580 XIO 40,#2,0,0,"R1:": REM [Start I/O]

590 PRINT #2; OUTLINE$:REM [Send line]

600 INPUT #2; OUTLINE$: REM [Get reply]

610 CLOSE #2: REM [Stop I/O]

620 REM

630 NEXT ETERNITY

900 REM
901 REM==========

902 REM

910 OPEN #2,8,0,"R1:": REM [Send EOF]
920 PRINT #2;"EOF EOF EOF"

930 CLOSE #2:CLOSE #1:REM [All done]

999 END

62

RECEIVE PROGRAM

110 DIM INLINE$(255)
200 REM

201 REM==========

202 REM

210 LET TRANSLATE=32:REM [Full ATASCII]
220 XIO 38,#1,TRANSLATE,0,"R1:"

230 REM

240 PRINT "Receive file's full name";

250 INPUT INLINE$

260 OPEN #2,8,0,INLINE$
270 REM

280 OPEN #1,13,0,"R1:"

290 XIO 40,#1,0,0,"R1:": REM [Start I/O]

500 REM

501 REM==========

502 REM

510 FOR ETERNITY=1 TO 2 STEP 0
520 REM

530 INPUT #1,INLINE$:REM [Get line]
540 CLOSE #1:REM [Stop I/O]

550 REM

560 IF INLINE$="EOF EOF EOF" THEN 900

570 REM

580 PRINT #2,INLINE$:REM [Save line]

590 PRINT INLINE$:REM [Echo onscreen]

600 REM

610 OPEN #1,13,0,"R1:"
620 XIO 40,#1,0,0,"R1:": REM [Start I/O]

630 PRINT #1:REM [Send reply]

640 REM
650 NEXT ETERNITY

900 REM

901 REM==========

902 REM

910 CLOSE #2:REM [EOF received]

999 END

 63

2. BAUDOT TERMINAL EMULATOR

Here is a sample program showing the use of odd character

transmission sizes and non-ATASCII (also non-ASCII) character codes.

This program turns your ATARI computer into a BAUDOT teletype

emulator.

WARNING: The ATARI 850 Interface Module was not designed for

connection to old teletype equipment. Such equipment used

60 milliamp current loops rather than the more modern 20

milliamps, and high voltages (could be present) in such old

equipment (which is dangerous) and could damage your 850

Interface Module. This program is intended to allow you to

communicate, via a modem, over a telephone or radio link

with someone owning a BAUDOT teletype.

The Baudot code is an old 5-bit serial code which is actually two

codes in one. Half of the characters in Baudot are in the LETTERS

SHIFT category and half are in the NUMBERS SHIFT category. The

latter category includes digits 0-9 and some special characters.

This program takes care of sending and receiving the shifting

control characters.

This program is actually much simpler than it looks. In lines 110-

210, the program's "constants" and starting values are set up. The

"constants" are values which are not changed in the program, but for

readability they are represented symbolically (as variables),

Constants include: logical constants (YES and NO), PEEK and POKE

addresses (SWITCH, KB), character constants (RETURN, FEED, UPSHIFT,

DOWMSHIFT); BASIC line number constants for GOSUB's and GOTO's

(RECEIVE, SEND, and TESTSWITCH); and useful numbers (NOPUSH, NOKEY).

Setting INSHIFT to zero establishes LETTERS SHIFT for received data;

setting ALPHA to YES establishes LETTERS SHIFT for sent data; and

setting TALK to NO establishes LISTEN mode.

Lines 300-390 fill in the ASCII-BAUDOT translation tables from the

data values in lines 2000-2460. REMarks are interspersed in the data

to show what character is being translated. Notice that all the

characters are represented within this program as numbers-the number

is the "internal" character code for the corresponding letter (this

is true for both ATASCII and BAUDOT, but, of course, the numbers

representing a particular letter are different for each).

In order to make the code conversion easy this translation mode is

set to 32 - no translation. The Baud rate is set to 45.5 Baud

(60 wpm). This is the most common speed for old Baudot equipment. It

is also the slowest speed configurable with the 850.

Lines 500-650 are the receive routine. The computer informs you that

you are entering Listen mode, then OPENs the RS-232-C port R3: for

input and starts the concurrent mode input (510-540). The receive

loop (560-650, first does a GOSUB TESTSWITCH to check for switching

to send mode (TESTSWITCH is discussed later). The STATUS and IF

64

PEEK... statements (580-585) see if there are any characters

received. If there are, a character is input in line 590 and

translated to ASCII in lines 600-630, and PRINTed to the TV in line

640. ATASCII table values less than zero mean untranslatable

characters: 0 means the LETTERS SHIFT character is received: 1 mean

NUMBERS SHIFT.

Lines 700-950 are the send routine. Talk mode is announced. and port

R3: is OPENed for output. The first send loop (750-950) action is a

GOSUB TESTSWITCH. Line 770 checks for the typing of a keyboard key.

In lines 780-800 the key's value is retrieved and its high bit is

stripped (it is forced to be less than 128 - this has the effect of

disregarding inverse video and allows the conversion to table to

require only 128 elements). The key is translated in line 810; if it

translated to zero, that means it has no Baudot equivalent and line

820 restarts the loop. Otherwise. it is echoed to the TV (830); it

then undergoes further translation in lines 840-890, where a LETTERS

or NUMBERS shift character is added if needed. Line 900 sends the

character itself, and if it was RETURN, lines 920-930 add a LINEFEED

and LETTERS SHIFT.

The TESTSWITCH routine (lines 1000-1060) checks whether one of the

function keys is pushed (START, SELECT or OPTION). If not pushed,

TESTSWITCH just RETURNs. Otherwise, the subroutine waits for the

button to be released, restores BASIC's GOSUB/FOR-NEXT stack, flips

from SEND to RECEIVE mode (or vice-versa) and does a GOTO to the

proper routine.

In operation, the 32-character internal buffer fills with characters

to be sent. When the buffer is full the Interface Module sends the

characters as a block. While the characters are being sent, the

keyboard will accept one character (which you won't see on the

screen), so you should type the next character you want to send and

wait for it to appear on the TV. Note that this program, as written,

sends the block immediately when you type RETURN. You may want to

experiment with variations, such as sending each character as it is

typed, or reading a line at a time rather than a character at a time

from the keyboard (this allows you to use backspace to correct you

typing, but the person at the other end of the connection won't see

anything except when you type RETURN). Have fun!

 65

110 DIM ATASCII(64),BAUDOT(128)

120 REM

121 REM(Set up constants...)
122 REM --------------------------------

130 LET YES=1:N0=0

140 LET SWITCH=53279:NOPUSH=7

150 LET KB=764:NOKEY=255
160 LET RETURN=8:FEED=2

170 LET UPSHIFT=27:DOWNSHIFT=31

180 LET RECEIVE=500: SEND=700

190 LET TESTSWITCH=1000

200 REM
201 REM (Starting values...)

202 REM ---------------------------------

210 LET INSHIFT=0:ALPHA=YES:TALK=NO

300 REM

301REM(Fill Baudot --> ATASCII table...)

302 REM ---------------------------------

310 FOR I=1 TO 64
320 READ IN

330 LET ATASCII(I)=IN
340 NEXT I

350 REM

351REM (Fill ATASCII --> Baudot table...)

352 REM ---------------------------------

360 FOR I=1 TO 128

370 READ IN

380 LET BAUDOT(I)=IN

390 NEXT I
400 REM

401 REM (Set up I/0...)

402 REM ---------------------------------

410 LET BAUD=128+48+1:TRANSLATE=32

420 XIO 36, #2,BAUD,0,"R3:"
430 XIO 38, #2,TRANSLATE,0,"R3:"

440 REM

450 OPEN #1,4,0,"K:"

500 REM

501 REM (Receive routine...)
502 REM ---------------------------------

510 PRINT: PRINT "Listen..."

520 REM

530 OPEN #2,5,0,"R3:": REM [Input]

540 XIO 40,#2,0,0,"R3:": REM [Start]

550 REM
551 REM (Receive loop...)

552 REM ---------------------------------

560 FOR INLOOP=0 TO 0 STEP 0
570 GOSUB TESTSWITCH

580 STATUS #2,PORT4

585 IF PEEK(747)=0 THEN NEXT INLOOP

590 GET #2,IN

66

600 LET IN=ATASCII(IN-224+INSHIFT+1)

610 IF IN<0 THEN NEXT INLOOP

620 IF IN=0 THEN INSHIFT=0:NEXT INLOOP
630 IF IN=1 THEN INSHIFT=32:NEXT INLOOP

640 PRINT CHR$(IN);

650 NEXT INLOOP

700 REM
701 REM (Send routine...)

702 REM ---------------------------------

710 PRINT:PRINT "Talk..."

720 REM

730 OPEN #2,8,0,"R3:": REM [Output]
740 REM

741 REM (Send loop...)

742 REM ---------------------------------

750 FOR OUTLOOP=0 TO 0 STEP 0

760 GOSUB TESTSWITCH

770 IF PEEK(KB)=NOKEY THEN NEXT OUTLOOP

780 GET #1,KEY
79G LET OUT=KEY

800 IF OUT>127 THEN LET OUT=OUT-128

810 LET OUT=BAUDOT(OUT+1)
820 IF OUT=0 THEN NEXT OUTLOOP

830 PRINT CHR$(KEY)

840 IF ALPHA THEN 880

850 IF OU<0 THEN 900

860 LET ALPHA=YES: PUT #2,DOWNSHIFT

870 GOTO 900

880 IF OUT>0 THEN 900

890 LET ALPHA=NO: PUT #2,UPSHIFT
900 PUT #2,ABS(OUT)

910 IF OUT<=>RETURN THEN NEXT OUTLOOP
920 PUT #2,FEED: PUT #2,DOWNSHIFT

930 XI0 32,#2,0,0,"R3:"

940 LET ALPHA=YES

950 NEXT OUTLOOP

1000 REM

1001 REM (Listen/Talk switch test...)

1002 REM ---------------------------------
1010 IF PEEK(SWITCH)=NOPUSH THEN RETURN

1020 IF PEEK(SWITCH)<>NOPUSH THEN 1020

1030 POP: POP: REM [Pop GOSUB & FOR-loop]

1040 CLOSE #2

1050 IF TALK THEN TALK=NO:GOTO RECEIVE

1060 LET TALK=YES:GOTO SEND
2000 REM

2001 REM (Baudot to ATASCII table...)

2002 REM ---------------------------------
2010 REM [NUL,E,LINEFEED,A,SPACE,S,I,U]

2020 DATA -1,69,-1,65,32,83,73,85

2030 REM [RETURN,D,R,J,N,F,C,K]

2040 DATA 155,68,82,74,78,70,67,75

 67

2050 REM [T,Z,L,W,H,Y,P,Q]

2060 DATA 84,90,76,87,72,89,80,81

2070 REM [O,B,G,Numbers,M,X,V,Letters]
2080 DATA 79,66,71,1,77,88,86,0

2090 REM [NULL,3,LF,-,SPACE,BELL,8,7]

2100 DATA -1,51,-1,45,32,253,56,55

2110 REM [RETURN,$,4,',COMMA,!,:,(]
2120 DATA 155,36,52,39,44,33,58,40

2130 REM [5,",),2,#,6,0,1]

2140 DATA 53,34,41,50,35,54,48,49

2150 REM [9,?,+,Numbers,.,/,;,Letters]

2160 DATA 57,63,43,1,46,47,59,0
2200 REM

2201 REM (ATASCII to Baudot table...)

2202 REM -------------------------------------

2210 REM [Graphics characters incl. CR]

2220 DATA 0,0,0,0,0,0,0,0

2220 DATA 0,0,0,0,0,0,0,0

2220 DATA 0,0,0,0,0,0,0,0
2220 DATA 0,0,0,8,0,0,0,0

2260 REM [SPACE,!,",#,$,%,&,']
2270 DATA 4,-45,-17,-20,-9,0,-26,-11

2280 REM [(,),*,+,COMMA,-,.,/]

2290 DATA -15,-18,0,-26,-12,-3,-28,-29

2300 REM [0,1,2,3,4,5,6,7]

2310 DATA -22,-23,-19,-1,-10,-16,-21,-7

2320 REM [8,9,:,;,<,=,>,?]

233G DATA -6,-24,-14,-30,0,0,0,-25

2340 REM [@,A,B,C,D,E,F,G]
2350 DATA 0,3,25,14,9,1,45,26

2360 REM [H,I,J,K,L,M,N,O]

237G DATA 20,6,11,15,18,28,12,24
2380 REM [P,Q,R,S,T,U,V,W]

2390 DATA 22,23,10,5,16,7,30,19

2404 REM [X,Y,Z,Graphics characters]

2410 DATA 29,21,17,0,0,5,0,0

2420 REM [A-Z again]

2430 DATA 0,3,25,14,9,1,45,26
2440 DATA 20,6,11,15,18,28,12,24

2450 DATA 22,23,10 5,16,7,30,19

2460 DATA 29,21,17,0,0,5,0,0

9999 END

68

3.EXAMPLE OF PROGRAMMING A PRINTER THROUGH AN RS-232-C PORT

Here are two examples of programming printers connected serially

through RS-232-C ports. It is assumed that there are fundamental

differences between the two - the charactersitics of each printer

control how that printer must be programmed. These two sample

programs (or program fragments) are not intended to show general

techniques, but are examples of how certain specific needs can be

met.

The printer being programmed here is able to buffer and hold

characters ahead of its printing (or it is so fast that it is always

ready to accept characters to print). When it does not want you to

send more data, it sets a READY line OFF, that line is connected

here to the DSR pin on the RS-232-C port. Howeven the printer sets

its READY line OFF early - it is still able to collect up to 32

characters after it says it's full. In other words, since the RS-

232-C ports block data out in blocks of up to 32 characters, it is

only necessary to monitor the DSR line once per block.

The automatic moryitoring of DSR once per block is set up in line

150. In line 160, we tell the Interface Module to add LF to each CR

(this printer wants the LF).

When a block is about to be sent, the Interface Module checks DSR

(per our request). If it is OFF, the resulting NAK error is TRAPped

(line 360), and in the TRAP routine (900 etc.) the program checks

that the TRAP was really caused by the DSR being OFF. If this was

the cause, the PRINT is simply retried - eventually it will succeed

because the printer will become ready again.

 :

 :

 :

140 OPEN #2,8,0,"R2:"

150 XIO 36,#2,0,4,"R2:": REM [Monitor DSR]

160 XIO 38,#2,64,0,"R2:": REM [Add LF to CR]

 :

 :

360 TRAP 900

370 PRINT #2, :REM [PRINT something to R2:]

 :

 :

900 STATUS #2,PORT2: REM [Get R2: status]

910 LET READY=PEEK(746)/8: REM [Check readiness error]

920 IF INT(READY)<>INT(READY+0.5) THEN 360: REM [If so, retry]

930 REM [If here then some error other than port not ready]
 :
 :

 :

 69

4.ANOTHER EXAMPLE OF PRINTER CONTROL THROUGH AN RS-232-C PORT

The printer being programmed in this example also has a READY line

to signal that it is not ready to accept data. However, when it is

not ready, it cannot accept any data. Therefore, the data must be

sent to the printer one character at a time, checking DSR before

each character. Since the PRINT statement cannot be made to send

data one character at a time, we assume that the file to be printed

was first written to a disk or cassette. Here is a program to read

that file off the disk or cassette and print it on this printer.

The operation of this program should be fairly obvious. Once again,

we assume the printer wants both CR and LF at the end of a line

(lines 230-240). The file is read from disk (or tape) one character

at a time. Then if the printer on port R2: is ready (540-550), the

character is PUT (560). The output is then forced (FORCE SHORT

BLOCK) in line 570.

110 DIM FILE$(16)

200 REM
201 REM ---------------------------

202 REM

210 LET BAUD=13: REM [4800 Baud]

220 XIO 36,#2,BAUD,"R2:"

230 LET TRANSLATE=64: REM [Add LF to CR]

240 XIO 38,#2,TRANSLATE,0,"R2:"

250 REM

260 PRINT "List file's full name";
270 INPUT FILE$

280 OPEN #1,4,0,FILE$

290 REM
300 OPEN #2,8,0,"R2:"

500 REM

501 REM ---------------------------

502 REM

510 FOR ETERNITY=0 TO 0 STEP 0

520 TRAP 900: REM [Trap end of file]
530 GET #1,CHARACTER

540 STATUS #2,XXX: REM [Check ready]

550 IF PEEK(747)<128 THEN 540

560 PUT #2,CHARACTER

570 XIO 32,#2,0,0,"R2:"

580 NEXT ETERNITY

900 REM
901 REM ---------------------------

902 REM
910 CLOSE #2: CLOSE #1

920 END

70

5. READING A DIGITIZER

MORE INPUT THAN BASIC CAN HANDLE

his is an example of reading data from a digitizing pad. A

digitizing pad is a device which is capable of sensing the position

of a hand-held object (a special pen or whatever) and reporting its

location to the computer.

The digitizing pad used here is capable of sending its information

to the computer at speeds up to 4800 baud, so that is used here.

Each sampled pen position is 14 characters long: a digit indicating

whether or not the button on the pen is being pushed, the x-

coordinate (6 characters), the y-coordinate (6 characters), a CR and

a LF. Since the LF follow, the CR the Interface Module will read it

as the first character on the following input line.

If we assume that the digitizer sends the pen coordinates as fast as

it can, then BASIC will not be able to keep up at 4800 Baud. A lower

Baud Rate might allow BASIC to get every sample, but at 300 Baud,

for example, it would take about HALF A SECOND for each sample to

come in (15 characters at 30 cps)! Thus we want the data to come in

at the highest possible rate. It really doesn't matter if we miss

samples, because the pen is usually in pretty much the same place

sample after sample.

Therefore, it is OK. if the digitizer sends samples as fast as it

can and the program just grabs them now and then when it can.

However, we have to take into account the way the Interface Module

behaves when data arrives too fast: when the computer's holding

buffer fills up, the NEWEST data replaces the OLDEST. However, an

INPUT statement reads the OLDEST data - which is messed up by being

replaced by the newer data!

Th is is actually very trivial to solve. Look at line 100. A sample

is INPUT twice! The first INPUT gets the messed-up sample which has

been written oven by new data. Then the second INPUT gets a sample

from the buffer which is unharmed. (This works because the sample

contains enough characters to allow an INPUT to get significantly

ahead of the arriving character stream, and because the sample

contains fewer characters than the holding buffer).

Lines 110-130 extract the coordinates from the sample. It was not

possible to use an INPUT statement with these number variables

because the sample does not have commas between the sample numbers.

The details of what the program does with the samples is not shown

(in order to keep the example to the important points).

71

10 DIM IN$(16)

20 XIO 36,#1,13,0,"R2:"

30 OPEN #1,5,0,"R2:"
40 XIO 40,#1,0,0,"R2:"

 :

 :

100 INPUT #1, IN$: INPUT #1,IN$

110 LET BUTTON=VAL(IN$(2,2))

120 LET X=VAL(IN$(3,8))

130 LET Y=VAL(IN$(9,14))

 :

 :

590 GOTO 100: REM [Get next point]

72

APPENDIX 10

CODE TABLES DECIMAL HEX

Decimal

code

Hex.

Code

ASCII

Character

ATASCII character

Function/Display

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

QS

RS

US

SP

!

"

$

%

&

'

(

)

*

+

(KEY ESC ESC)

MOVE UP ONE LINE =^

MOVE DOWN ONE LINE =V

MOVE LEFT ONE SPACE =<

MOVE RIGHT ONE SPACE =>

SPACE

!

"

$

%

&

'

(

)

*

+

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

}

~

DEL

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

CLEAR SCREEN

BACKSPACE

TAB (10 SPACES)

Below is a table of the most common Baudot code. All Baudot codes

are identical for letters, numbers, and control characters, but they

differ somewhat in punctuation. The DECIMAL VALUE column gives the

5-bit Baudot serial binary code converted to decimal. When

transmitted, a start bit (space) precedes the character, the

character itself is sent low bit first, and 1.5 or 2 stop bits

(mark) follow. Mark is sent for 1, space for 0.

The hex/dec columns show the value of the Baudot character when

interpreted as an 8-ibt word with the three high-order bits set to

1. These are the codes which represent the Baudot characters with

the Interface Module's no-translation mode (translation mode 32).

75

Letters

Figures

Decimal Value

HEX/DEC

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

NULL

RETURN

LINEFEED

SPACE

LETTERS

FIGURES

- (dash)

?

:

$

3

!

+ or &

or STOP

8

' (apost.)

(

)

. (period)

, (comma)

9

0 (zero)

1 (one)

4

BELL

5

7

;

2

/

6

"

NULL

RETURN

LINEFEED

SPACE

LETTERS

FIGURES

3

25

14

9

1

13

26

20

6

11

15

18

28

12

24

22

23

10

5

16

7

30

19

29

21

17

0

8

2

4

31

27

E3/227

F9/249

EE/238

E9/233

E1/225

ED/237

FA/250

F4/244

E6/230

EB/235

EF/239

F2/242

FC/252

EC/236

F8/248

F6/246

F7/247

EA/234

E5/229

F0/240

E7/231

FE/254

F3/243

FD/253

F5/245

F1/241

E0/224

E8/232

E2/226

E4/228

FF/255

FB/251

76

APPENDIX 11

PRINCIPLES OF OPERATION OF THE ATARI 850 INTERFACE MODULE

The ATARI 850 Interface Module is a computer: it contains a

microprocessor , built-in program in ROM, and extensive I/O

capability. The I/O forms the parallel (printer), and serial

(RS-232-C ports, and is also used for communication between the

Interface Module and the ATARI 400 or ATARI 800 computer.

This section presents the theory of operation of the Interface

Module. Topics include the automatic bootstrap function, operation

of the RS-232-C port handler which is loaded by the bootstrap

function into the 400 or 800 computer operation of the Interface

Module to execute the RS-232-C I/O commands, and operation of the

printer port. The electrical interfaces of the RS-232-C and printer

ports are shown, and signal handshake and timing on the printer port

are discussed.

POWER-ON BOOTSTRAPPING OPERATION

NOTE THAT THE BOOTSTRAPPING OPERATION IS REQUIRED ONLY FOR OPERATION

OF THE RS-232-C (SERIAL) PORTS AND NOT THE PRINTER PORT. The ATARI

400 and 800 computers already contain the necessary programming to

operate the printer port on the 850 Interface Module. The automatic

power-on bootstrapping operation, when enabled, loads the 1762-byte

handler and tables required for operation of the serial ports.

The bootstrapping operation is enabled by turning ON the power to

the Interface Module before the 400 or 800 computer.

Without Disk Drive

When the ATARI Personal Computer System's power is turned on, it

issues a disk requesT. If there is no Disk Drive in the system (or

if the Disk Drive is OFF), the Interface Module responds to the disk

request. The computer then loads a special bootstrapping program

from the Interface Module, as if it were reading from a disk. The

bootstrapping program is then run, and it gets the RS-232-C handler

from the Interface Module and relocates it into the computer's RAM.

The memory occupied by the bootstrapping program is then freed (but

the handler remains}.

With Disk Drive

If there is a Disk Drive attached to the system (Drive 1 only), it

responds to the disk request issued by the 400 or 800 computer at

power-on. The computer then reads a start-up program from that disk.

Most commonly, this program is an ATARI Disk Operating System (DOS).

The Interface Module does not respond to the disk request if a Disk

 Drive responds first, therefore, the program loaded from the disk

must load the handler from the Interface Module. In the DOS II, this

job is handled by a special AUTORUN.SYS file supplied with your

DOS II diskette.

 77

The AUTORUN.SYS program is loaded and executed by the DOS, it finds

the Interface Module and loads the bootstrapping program from it.

The bootstrapping program then loads and relocates the RS-232-C

handler from the Interface Module. Read the instructions supplied

with your DOS II for details on AUTORUN.SYS.

PRINTER SOFTWARE OPERATION

The Interface Module responds to commands to an ATARI printer

whenever it senses a printer attached to the parallel port (see the

electrical section on the printer port for signal requirements

between the Interface Module and a printer).

The ATARI 400/800 Operating System contains a printer handler

program which will address one printer, called P: . Four commands

are allowed by the P: handler: OPEN, CLOSE, output (represented by

PUT, PRINT, and LIST in BASIC), and STATUS.

To use the printer, one must OPEN a channel (IOCB) to the printer.

CLOSE releases the channel when it is no longer needed.

ATARI printers (including the Interface Module) operate in Block

Output Mode (as described elsewhere in this manual for the RS-232-C

port operation). The printer handler builds a 40-byte buffer, and

when the buffer fills, the 40 bytes are sent to the printer. When a

printer is attached to the Interface Module, the Interface Module

accepts the 40 characters and sends them, one at a time, over the

parallel port to the attached printer. The printer must acknowledge

all 40 characters within 4 seconds (see the electrical section for a

discussion of the handshake between the Interface Module and a

printer).

There is one exception to the above description: When the printer

handler is asked to print an ATASCII EOL (End-Of-Line) character, it

fills any unused part of the 40-character buffer with blanks

(following the EOL) and sends it immediately. For this reason, the

Interface Module ignores any characters in the buffer which follow

an EOL.

The Interface Module translates EOL into ASCII CR (Carriage Return,

13 decimal). No other translations are made. In particular, bit 7

(high bit) of each byte is not changed, and LF is not added

following CR.

However. multiple EOL's in a row, without intervening characters,

are sent to the printer as alternating CR's and blanks.

A special note about LPRINT in BASIC: LPRINT is equivalent to OPEN,

PRINT and CLOSE all in one. Execution of an LPRINT statement with a

comma or semicolon at the end will send to the Interface Module a

40-character buffer which is padded with blanks but does NOT have an

EOL character. The Interface Module will send all 40 characters to

the printer (including the blanks), but the printer will probably

78

not respond because most printers wait for CR before activating a

print cycle.

The STATUS request for device P: is answered by the Interface Module

if there is a printer attached and powered ON. The status returned

in location 746 (decimal) contains 128 if the previous operation to

the printer was successful, 129 if the previous command to the

Interface Module printer port was bad, 130 if the previous 40-byte

data frame had an error (this should not happen); and 132 if the

previous command timed out - that is, the printer stayed BUSY past 4

seconds.

RS-232-C PORTS SOFTWARE OPERATION

Once booted, the RS-232-C port handler is linked in as the R:

device. This handler contains code to re-establish itself whenever a

warm start (RESET) occurs.

The RS-232-C handler is called by CIO to execute each type of I/O

operation for the R: device (except output calls from BASIC which

bypass CIO by calling the RS-232-C handler directly). Some of the

commands are executed entirely by the handler (set-up), but most are

passed on to the Interface Module. Some commands cause set-up in

both the handler and in the Interface Module.

The CONFIGURE BAUD RATE command is a set-up command which is

executed by both the handler and the Interface Module. Both the

handler and the Interface module keep separate tables for each of

the four RS-232-C ports.

The SET TRANSLATION MODE command is executed by the handler. This

command sets values which control the translation and parity

handling during I/O.

The CONTROL command is executed by the Interface Module. Outgoing

control lines for the indicated port are set ON (or MARK), set OFF

(or SPACE), or left alone, as specified by the control parameter.

Each line is left alone until another CONTROL command is executed.

Note that, if the XMT line is set to SPACE, it will return to SPACE

following any subsequent data transmission, until another CONTROL

command sets it to MARK.

The OPEN command is executed entirely by the handler. It establishes

control information for the port being OPENed. The CLOSE command is

executed mostly by the handler: OPEN flags are cleared, any data in

output buffers is sent, concurrent mode I/O is shut down. Any data

in an input buffer is lost at CLOSE time.

Block mode output takes data from BASIC PRINT or PUT statements,

puts each character through translation, and puts each character

into the 32-byte output buffer. The buffer is transmitted when it

fills, or when 13 (hex) is stored into the buffer (automatic short

block on CR). Data from the buffer is sent to the Interface Module

as 8-bit bytes. If 7-, 6-, or 5-bit words are configured, the

79

Interface Module strips the necessary number of high-order bits from

each byte before transmitting it to the port. If monitoring of any

external status line has been configured for the port, the readiness

is checked by the Interface Module whenever a block is sent to it.

If not ready, the Interface Module returns a NAK. The 400/800

computer waits while the Interface Module transmits a block.

The FORCE SHORT BLOCK command causes the handler to transmit the

block of data before 32 bytes have been collected. If there is no

data in the buffer, the FORCE SHORT BLOCK command has no effect.

When START CONCURRENT MODE I/O is performed, a number of things

occur. The handler marks the concurrent mode I/O as active (if there

are no errors while starting concurrent mode I/O). The handler sets

up its own serial input/serial output interrupt handlers as

necessary (depending on I/O direction) to field data going in and

out. The handler sets itself up to monitor the BREAK key so BREAK

will stop the concurrent mode I/O. The handler establishes the

initial (empty) state of the input and output buffers. Then the

handler informs the Interface Module that concurrent mode I/O has

started.

During concurrent mode I/O, each character being received from the

Interface Module is taken in by the handler's interrupt driver, put

through translation, and placed in the input buffer. Characters to

be sent to the Interface Module are translated and put in the output

buffer. As the serial hardware in the computer finishes sending each
character, the output interrupt driver immediately sends another

character from the buffer (unless it is empty). If the input buffer

overflows, an error is flagged, output buffer overflow stops putting

data into the buffer until data is sent to free buffer space.

Input and output statements (GET, PUT, PRINT, INPUT) executed to a

channel through which concurrent I/O is active do not directly cause

any I/O to the RS-232-C port. Rather, input statements simply

retrieve data that is in the input buffer and output statements put

data into the output buffer. If an input statement wants more data

but the input buffer is empty, BASIC will wait until the data

arrives. If an output statement attempts to put data into a full

output buffer BASIC will wait until space becomes available (as a

result of the interrupt-driven sending of data from the output

buffer). The interrupt-driven sending of data from the output buffer

starts as soon as data is put into the buffer. The data is moved

into and out of each buffer circularly - that is, the buffer is

automatically re-used. The maximum amount of data a circular buffer

can hold at once is one less byte than its size.

The Interface Module handles concurrent I/O in one of two ways. The

most common mode is used when 8-bit words are being transmitted, no

matter what the rate of I/O direction. In this mode, the interface

module "connects" (through the interface module's microprocessor)

80

the XMT and RCV lines of the selected port to the I/O connector

going to the computer. The data is not interpreted by the Interface

Module in this mode, all serialization of the data is performed by

the serial I/O hardware in the 400/800 computer. Note that the

"connection" between the RS-232-C port and the computer's peripheral

I/O port is handled by software. Each line coming in to the

Interface Module (one from the computer, one on the RS-232-C port)

is sampled (checked) over and over, and its value is then passed on

to "connected" outgoing line. The sampling rate is 34.6 kHz; the

lines are sampled every 28.9 microseconds.

The other concurrent I/O mode is established in the Interface Module

for low speed (300 Baud or less) 7-, 6- or 5-bit input (half-

duplex). In this mode, the Interface Module receives a 7-, 6- or 5-

bit character from the port and then transmits a corresponding 8-bit

character to the computer. This is done because the computer's

hardware is not capable of receiving anything but 8-bit serial

words. The Interface Module receives the data by sampling it at a

rate of 16 samples per bit (similar to a typical UART). As each

character is sent from the Interface Module to the computer extra

high-order 1-bits are added to get 8-bit words. The Interface Module

sets an internal error flag if a framing error occurs in the

incoming data. This flag may be queried with STATUS after the

concurrent I/O is stopped.

The Interface Module leaves concurrent mode when told to by the

handler when the concurrent I/O channel is CLOSED, or when BREAK or

RESET is pushed.

The Interface Module is constantly keeping track of all incoming RS-

232-C readiness lines, for the purpose of being able to report their

history to the STATUS command. This does not apply to the RCV lines

or any lines on the printer port. The readiness lines are checked

periodically through sampling. The sampling rate depends on the

activities the Interface Module is asked to perform. In order not to

be missed, a pulse on a readiness line should be at least a few

dozen milliseconds in duration.

The STATUS command is performed either by the RS-232-C handler alone

(when concurrent I/O is active) or by both the handler and the

Interface Module. In the former caser the handler supplies the user

with information about its current operation. In the latter case,

the handler combines some of its own information with status and

sense information supplied by the Interface Module.

 81

ELECTRICAL SPECIFICATIONS OF RS-232-C SERIAL PORTS

(You may refer to the schematic diagram of the 850 Interface Module

 - APPENDIX 12 Figure 6 - while reading this section).

There are basically two types of circuit for the serial port lines:

a receiving circuit, and a transmitting circuit. One of these

circuits connects each RS-232-C signal line to a pin of one of the

two computer I/O chips in the Interface Module.

The sending circuit consists of an operational amplifier (op-amp)

followed by a 10 Ohm protective resistor. The op-amp is driven "to

the rail", and produces approximately +9 volts for SPACE, and

-5.5 volts for MARK guaranteed at least + or -5V, when driving a

3000 Ohm load (3 kOhm is the worst-case load allowed by the RS-232-C

standard, any lower resistance may result in improper operation).

The driver circuit will withstand short circuits to ground, and will

withstand connection to voltages within their driving range.

Shorting a driver to a voltage outside the range -5.5 to +9 volts
may result in damage to the Interface Module.

The receiving circuit consists of a diode and transistor whose

function is to convert the minus/plus RS-232-C voltages to the

voltages used by the I/O chips. A 4700 Ohm input resistor protects

the outside device from having to deliver too much current. Notice

that the DSR inputs have 1800 Ohm resistors attached to ground which

insure that DSR will seem OFF if nothing is attached to DSR

(however, this is no protection against the "antenna effect" of a

long unterminated wire attached to DSN which will cause DSR to go ON

and OFF if there is activity in other leads in the same cable).

Port 4 may be set up for 20 mA current loop operation. In current-

loop operation, pins 4 and 7 (RTS +10V, and RCV) are tied together

(Pin numbers are of the 9-pin connector of the Interface Module).

When the attached Teletype keyboard-sending contacts are closed, pin

9 pulls RCV negative (MARK). This is the idle state of the Teletype.

Whenever the switch opens during transmission of a character from

the Teletype, RCV is pulled positive (SPACE). Notice that if the

Teletype if turned off this switch may be open and the 850 Interface

Module will receive a BREAK signal.

For current loop output, the Teletype's printer solenoid is tied

between pins 1 and 3 (+10v DTR and XMT). XMT is normally negative

(MARK), thus the solenoid is activated in the MARK state. XMT goes

to nearly +10V for SPACE so very little current passes through the

solenoid and it disengages. Be careful when connecting a current

loop device that it does not apply excessive voltages to the

Interface Module. Also note that if the send and receive loops are

connected together within the Teletype the send or receive loop may

not work correctly (the signal may be shorted out). If this happens,

try swapping the send or receive wire pairs.

82

PARALLEL PRINTER PORT SPECIFICATIONS

While reading this section you may refer to the Interface Module

schematic - APPENDIX l2 Figure 6 - and printer port timing diagrams

at the end of this section.

All signals on the printer port are TTL level (0 to +5V). The output

lines are buffered by transistors to supply the necessary drive for

the printer electronics. Input lines are buffered to protect the I/O

chips.

The output circuit can sink 5 milliAmps. That is, the circuit is

capable of pulling 1000 Ohm pull-up resistors in the printer to TTL

zero. The output circuit expects some such pull-up in the printer;

if they are not present, the output lines will be pulled to +5V only

by the internal 10000 Ohm pull-up resistors and the lines may slew

too slowly to TTL one.

The Interface Module detects the presence of the printer via the

FAULT line. If this line is low, the Interface Module will not

respond to printer requests from the 400 or 800 computer. This line

is low if the 825 printer is turned off (or disconnectedl. This

feature allows you to connect more than one ATARI printer to the

computer I/O port, and switch between them by powering only one of

them on at a time. If you attach your own printer to the printer

port, FAULT must be high (TTL one) for the Interface Module to

operate the printer. If there is no appropriate signal from your

printer to which FAULT may be attached, you may connect FAULT (pin

12) to the +5V pull-up at pin 9. Be sure you do not connect FAULT to

a busy-type line which will alternate on and off, FAULT should stay

on.

The eight data lines are positive-logic. The data lines normally

rest at zero (ASCII NULL). A data byte is sent to the printer (when

it is not BUSY) by placing the data on the 8 data lines and pulsing

the DATA STROBE. The STROBE is normally high, and goes low during

the strobe pulse.

After sending each data byte to the printer, the Interface Module

waits for a BUSY signal. The ATARI 825 printer sends a positive-

logic BUSY signal as it processes each byte of data. The BUSY is

quite short for most data bytes since the printer merely saves each

character in its own memory, but BUSY is quite long when the printer

prints. The Interface Module does not care how long the printer is

BUSY - the only requirement is that the printer respond to all 40

characters (that is, go not BUSY after the last character) within 4

seconds. Immediately after BUSY goes low again, the Interface Module

sends the next character to the printer. When all the characters

have been accepted by the printer, the Interface Module signals the

400/840 computer that the print operation is finished.

Some printers which use the Centronix-type interface do not signal

BUSY for each character received, but only go BUSY during printing.

 83

For this reason, the Interface Module only waits 200 microseconds

for BUSY after sending a data byte. If BUSY does not go on within

this time, the Interface Module sends the next character assuming

the printer has completed its processing of the preceding character.

84

 85

86

 87

Note 1: This port is designed for connecting the ATARI 825 Printer.

If you are going to connect a different printen consult the

specifications of its input connector. Make sure that the

cable you use to connect between the Printer Port of the 850

and the input to the printer is wired correctly to connect

Bit 0 to Bit 0, and so on. You may have to construct your

own cable.

Note 2: FAULT must be +5V for printer port to operate. If your

printer has nothing appropriate to connect to FAULT (such

as +5V power or some ONLINE-type signal), connect pin 9 to

in 12.

88

* one byte sent every 280 us without Busy (see text)

** pulse must be 950us, no maximum. Howeven 40 characters must be

accepted by printer in 4 sec. (see text)

*** approximate

**** Busy may follow either leading or trailing edge of strobe,

however, it must remain at least 50us after trailing edge of

strobe.

Figure 6. Printer Port timing diagram.

 89

APPENDIX 13

ATARI 830 Modem

The term "modem" is a contraction of "modulator/demodulator". In

this context, modulate means to convert from serial binary data to

signals of particular frequencies and demodulate means to convert

from signals of particular frequencies to serial binary data. The

ATARI 830 is a modem. It allows you to send and receive data over

telephone lines at rates up to 300 Baud (equivalent to 30

characters/second).

To use the modem you need an ATARI 400 or 800, the ATARI 850

Interface Module and a telephone. Hook-up is shown on the packing

box of the modem.

The modem uses frequencies in the audio range. The communication

paths include small volumes of air between the modem and the ear-

piece and mouthpiece of the telephone. Hence, a modem of this type

is said to be "acoustically coupled".

The common standard for communications between computer-related

equipment is the RS-232-C standard of the Electronic Industries

Association (see APPENDIX 1). The ATARI 830 modem conforms with that

standard. The most common type of Modem in use is the Bell 103/113

series. The ATARI 830 modem can communicate with Bell 103/113

equipment.

SIZE

10.2 x 4.7 x 2.3 inches

WEIGHT

1.5 lbs.

TEMPERATURE

Operating environment: 32 to 122 degrees Fahrenheit. (0 to 50

degrees Centigrade)

Storage: -40 to 140 degrees Fahrenheit. (-40 to 60 degrees

Centigrade)

ELECTRICAL REQUIREMENTS

24 VAC/150mA supplied by UL-listed wall-mount transformer with

6 foot cord.

HUMIDITY

Operating Environment: 10% to 90% relative humidity (no

condensation).

Storage: 5% to 95% (no condensation).

 91

TRANSMITTER FREQUENCIES

Originate:

Mark: 1270Hz

Space: 1070Hz

Answer:

Mark: 2225Hz

Space: 2025Hz

RECEIVE FREQUENCIES

Originate:

Mark: 2225Hz

Space: 2025Hz

Answer:

Mark: 1270Hz

Space: 1070Hz

MAXIMUM TRANSMISSION RATE

300 Baud

RECEIVE SENSITIVITY

-45dBm

CONTROLS

FULL/TEST,/HALF

FULL: Sets full duplex operation.

TEST: Sets up audio self-test mode.

HALF: Sets half duplex operatian.

Receive data wiil copy transmit data.

ANS/OFF/ORIG

ANS: Sets answer mode.

OFF: Turns unit power off.

ORIG: Sets originate mode.

INDICATORS

POWER: Power on.

READY: Ready to communicate.

DATA INTERFACE

The modem provides an RS-232-C interface via a standard 25 pin

female D-connector. The table below lists the signals used by the

modem.

92

OUTPUTS: Mark(OFF): -8V

 Space(ON): +10V

INPUTS: Mark(OFF): -3 to -25V

 Space(ON): +3 to +25V

PIN CONNECTIONS

PIN #

SIGNAL

MNEMONICS

FUNCTION

SIGNAL DIRECTION

2

XMT

Transmit Data

Input to Modem

3

RCV

Receive Data

Output to Terminal

5

CTS

Clear To Send (On with

Carrier Detect)

Output to Terminal

6

DSR

Data Set Ready (On with

Carrier Detect)

Output to Terminal

7

-

Signal Ground

Common

8

CRX

Carrier Detect

Output to Terminal

INSTALLATION

Set modem power off, connect wall-mount transformer to unit and 115

VAC outlet.

Connect terminal RS-232-CC cable to interface connector on modem.

Turn modem to ORIG or ANS. POWER indicator should be ON.

OPERATION - ORIGINATE MODE

Set ANS/OFF/ORIG control to ORIG. and FULL/TEST/HALF control as

required.

Dial remote number. After hearing answering tone, place handset into

acoustic muffs with cord as indicated on label.

When READY indicator turns on, the modem is ready to communicate.

Proceed with communication.

 93

OPERATION - ANSWER MODE

Manually answer telephone, switch ANS/OFF/ORIG control to ANS.

NOTE: In answer mode a tone should be heard at all times with or

without the READY indicator being activated.

Place handset into muffs with cord as indicated by label.

When READY indicator turns on, proceed with normal data exchange.

To terminate call, switch back to OFF and hang up telephone.

TEST

This test mode is desgined to verify that the modem is functioning

properly. It does so by switching the transmitter channel

frequencies to match those of the receiver. All data into the modem

will be looped back to the terminal for verification. It requires a

telephone set to provide an isolated acoustic path between speaker

(transmitter) and microphone (receiver).

ORIGINATE MODE

Set terminal for full duplex operation and Modem to ORIG. Set

FULL/TEST/HALF switch ta TEST. A continuous tone should be heard

from the speaker muff. If no tone is present, unit is defective.

Dial a single digit on the telephone to obtain a quiet line

situation. Immediately place handset into acoustic muffs with cord

as indicated on label.

NOTE: A quiet line is required for this test to prevent dial tone

interference. The line # may remain quiet for only 30

seconds. Repeat as necessary. A longer quiet time can be

obtained by dialing a telephone extension or another number

under control. The mouthpiece of the second telephone set

must be covered to prevent room noise interference.

Wait for READY indication, type message an keyboard. The TEST

function will display message. Check terminal for message accuracy.

ANSWER-MODE

Once Modem passes test in originate mode, quickly switch to answer

mode with telephone handset still in the rubber muffs.

Wait for READY indication, type message on keyboard. The TEST

function will display message. Check terminal for message accuracy.

NOTE: If Modem gives READY indication in both answer and originate

modes yet no message or incorrect message (such as double

characters) is displayed on the terminal, the RS-232-C cable

94

or terminal interface may be at fault. If terminal can be

looped back with RS-232-C cable (pin 2 tied to pin 3 at

modem end) and correct message is displayed, then the modem

is defective.

TROUBLE SHOOTING

If you have problems, the most likely reason is the phone line.

Noise on the line or a weak phone line signal can often result in

lost or invalid data. Try to re-dial the call to insure connection

is noise-free and there is no interference.

If communication still cannot be established and modem checks out in

the TEST mode, see tables below for other possible causes for

failure.

Ready Light Off: Is modem power ON?

Is handset in proper position?

Label indicates direction of cord.

Are mode switches set properly?

1. When communicating with a time share computer the

modem should be set to ORIG mode. Modem at remote

computer end will be in answer mode.

2. When commmunicating with another terminal, mode

selection is determined by prior agreement

between users. Remember one modem must be in

answer mode, the other in originate mode.

3. For proper communication, modem must be either

FULL or HALF, not in TEST.

4. Is modem at the other end compatible with the

modem. Remote modem must be another modem or a

Bell 103-compatible modem. Communication cannot

be established with a Bell 202 type.

Double Character Is Modem in half duplex mode?

Display: 1. If remote computer echoes all characters both

modem and your terminal should be in FULL duplex

mode.

2. If communication system is half duplex (no echo>,

either your terminal or the modem (not both)

should be in HALF duplex.

Garbled Display: Is telephone handset fully seated in the rubber

muffs?

Is baud rate correct?

Both local and remote terminals must send data at

the same baud rate (300 baud or less).

Is received signal too weak or noisy?

Pick-up handset and listen for a clean tone (if

remote modem is in answer mode). If additional

tones, dialing pulses, static noise or voices are

present, data may be garbled. Re-dial call.

 95

NOTICE

Use of multiple printer control codes that involve carriage motion

(with the exception of end-of-line), can cause an ERROR 139 (Device

NAK). Carriage motion includes backspace, forward and reverse

linefeeds, and partial linefeeds.

The ATARI 850 Interface Module sends data to the printer in 40-

character blocks. If there is more than one carriage motion in each

block, the printer cannot recover in time to receive the next 40-

character block.

If you should have this problem, check your program. Try to arrange

your printer control codes in such a way that these is no more than

one carriage motion in each 40-character block. This can be done by

preceding each carriage motion with forty "null" characters. Null

characters can be generated with control comma ([CTRL] [,]) or with

CHR$(0).

C016504 Rev. 1

